These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
151 related articles for article (PubMed ID: 38898472)
1. A dynamic online nomogram for predicting renal outcomes of idiopathic membranous nephropathy. Wang F; Xu J; Wang F; Yang X; Xia Y; Zhou H; Yi N; Jiao C; Su X; Zhang B; Zhou H; Wang Y BMC Med Inform Decis Mak; 2024 Jun; 24(1):173. PubMed ID: 38898472 [TBL] [Abstract][Full Text] [Related]
2. Machine learning model to estimate probability of remission in patients with idiopathic membranous nephropathy. Duo L; Chen L; Zuo Y; Guo J; He M; Zhao H; Kang Y; Tang W Int Immunopharmacol; 2023 Dec; 125(Pt A):111126. PubMed ID: 37913570 [TBL] [Abstract][Full Text] [Related]
3. Nomogram to predict the progression of patients with primary membranous nephropathy and nephrotic syndrome. Liu L; Wang H; Zhao B; Liu X; Sun Y; Mao Y Int Urol Nephrol; 2022 Feb; 54(2):331-341. PubMed ID: 33909236 [TBL] [Abstract][Full Text] [Related]
4. A Dynamic Prediction Model for Renal Progression in Primary Membranous Nephropathy. Liang Y; Li Q; Zou Z; Huang B; Zhong N; Li C; Wang A; Chen Y; Tu S; Wan J Int J Med Sci; 2024; 21(7):1292-1301. PubMed ID: 38818472 [No Abstract] [Full Text] [Related]
5. Prognostic prediction of idiopathic membranous nephropathy using interpretable machine learning. Liu Y; Lu Y; Li W; Wang Y; Zhang Z; Yang X; Yang Y; Li R; Zhou X Ren Fail; 2023; 45(2):2251597. PubMed ID: 37724550 [TBL] [Abstract][Full Text] [Related]
6. Prediction model for treatment response of primary membranous nephropathy with nephrotic syndrome. Li M; Lai X; Liu J; Yu Y; Li X; Liu X Clin Exp Nephrol; 2024 Aug; 28(8):740-750. PubMed ID: 38709377 [TBL] [Abstract][Full Text] [Related]
7. Risk factor analysis and nomogram for predicting poor symptom control in smoking asthmatics. Ma J; Chen Z; Wu K; Lei J; Zhao L BMC Pulm Med; 2024 Jun; 24(1):264. PubMed ID: 38824531 [TBL] [Abstract][Full Text] [Related]
8. Development and validation of machine learning models and nomograms for predicting the surgical difficulty of laparoscopic resection in rectal cancer. Li X; Zhou Z; Zhu B; Wu Y; Xing C World J Surg Oncol; 2024 Apr; 22(1):111. PubMed ID: 38664824 [TBL] [Abstract][Full Text] [Related]
9. Construction and validation of a nomogram for predicting remission of migraine patients with patent foramen ovale after closure. Wang Y; Lou Y; Chen Y; Shi J; Zhang H Int J Cardiol; 2024 Jul; 407():132026. PubMed ID: 38609055 [TBL] [Abstract][Full Text] [Related]
10. Development and validation of nomograms for predicting survival of elderly patients with stage I small-cell lung cancer. Yang Y; Sun S; Wang Y; Xiong F; Xiao Y; Huang J Bosn J Basic Med Sci; 2021 Oct; 21(5):632-641. PubMed ID: 33577444 [TBL] [Abstract][Full Text] [Related]
11. [Development and validation of a nomogram for predicting 3-month mortality risk in patients with sepsis-associated acute kidney injury]. Yue X; Li Z; Wang L; Huang L; Zhao Z; Wang P; Wang S; Gong X; Zhang S; Wang Z Zhonghua Wei Zhong Bing Ji Jiu Yi Xue; 2024 May; 36(5):465-470. PubMed ID: 38845491 [TBL] [Abstract][Full Text] [Related]
12. Prediction of additional hospital days in patients undergoing cervical spine surgery with machine learning methods. Zhang B; Huang S; Zhou C; Zhu J; Chen T; Feng S; Huang C; Wang Z; Wu S; Liu C; Zhan X Comput Assist Surg (Abingdon); 2024 Dec; 29(1):2345066. PubMed ID: 38860617 [TBL] [Abstract][Full Text] [Related]
13. Development and Validation of a Nomogram for Predicting Survival Based on Ferritin and Transferrin Ratio in Breast Cancer Patients. Huang S; Lai H; Pan X; Lin Q; Qin Y; Liu F; Fang M; Huang W; Wei C Cancer Control; 2024; 31():10732748241261553. PubMed ID: 38850515 [TBL] [Abstract][Full Text] [Related]
14. Renal outcomes of idiopathic and atypical membranous nephropathy in adult Chinese patients: a single center retrospective cohort study. Jiang Z; Cai M; Dong B; Yan Y; Wang Y; Li X; Shao C; Zuo L BMC Nephrol; 2021 Apr; 22(1):148. PubMed ID: 33888083 [TBL] [Abstract][Full Text] [Related]
15. Development of a Dynamic Nomogram for Predicting the Probability of Satisfactory Recovery after 6 Months for Cervical Traumatic Spinal Cord Injury. Yan X; He Y; Jia M; Yang J; Huang K; Zhang P; Lai J; Chen M; Fan S; Li S; Fan Z; Teng H Orthop Surg; 2023 Apr; 15(4):1008-1020. PubMed ID: 36782280 [TBL] [Abstract][Full Text] [Related]
16. Construction and validation of nomograms combined with novel machine learning algorithms to predict early death of patients with metastatic colorectal cancer. Zhang Y; Zhang Z; Wei L; Wei S Front Public Health; 2022; 10():1008137. PubMed ID: 36605237 [TBL] [Abstract][Full Text] [Related]
17. Development and validation of outcome prediction model for reperfusion therapy in acute ischemic stroke using nomogram and machine learning. Wang Q; Yin J; Xu L; Lu J; Chen J; Chen Y; Wufuer A; Gong T Neurol Sci; 2024 Jul; 45(7):3255-3266. PubMed ID: 38277052 [TBL] [Abstract][Full Text] [Related]
18. Phospholipase A2 Receptor Antibodies and Clinical Prognosis in Patients with Idiopathic Membranous Nephropathy: An Updated Systematic Review and Meta-Analysis. Zhang J; Fan Z; Wang P; Zhang AH Kidney Blood Press Res; 2023; 48(1):102-113. PubMed ID: 36720217 [TBL] [Abstract][Full Text] [Related]
19. Using Machine Learning to Identify Risk Factors and Establishing a Clinical Prediction Model to Predict Atherosclerosis Complications in Idiopathic Membranous Nephropathy. Chen Y; He Y; Xing G Discov Med; 2023 Aug; 35(177):517-524. PubMed ID: 37553305 [TBL] [Abstract][Full Text] [Related]
20. Development and validation of nomograms to accurately predict risk of recurrence for patients with laryngeal squamous cell carcinoma: Cohort study. Cui J; Wang L; Tan G; Chen W; He G; Huang H; Chen Z; Yang H; Chen J; Liu G Int J Surg; 2020 Apr; 76():163-170. PubMed ID: 32173614 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]