BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 38898699)

  • 21. Porous Graphene-Carbon Nanotube Scaffolds for Fiber Supercapacitors.
    Park H; Ambade RB; Noh SH; Eom W; Koh KH; Ambade SB; Lee WJ; Kim SH; Han TH
    ACS Appl Mater Interfaces; 2019 Mar; 11(9):9011-9022. PubMed ID: 30653285
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Flexible fiber-shaped supercapacitors based on graphene/polyaniline hybrid fibers with high energy density and capacitance.
    Wu Y; Meng Z; Yang J; Xue Y
    Nanotechnology; 2021 Apr; 32(29):. PubMed ID: 33831848
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Laser-induced graphene electrodes scribed onto novel carbon black-doped polyethersulfone membranes for flexible high-performance microsupercapacitors.
    Baachaoui S; Mabrouk W; Rabti A; Ghodbane O; Raouafi N
    J Colloid Interface Sci; 2023 Sep; 646():1-10. PubMed ID: 37178610
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Rational synthesis of 3D coral-like ZnCo
    Bi Y; Fan H; Hu C; Wang R; Niu L; Wen G; Qin L
    RSC Adv; 2024 Apr; 14(17):11734-11745. PubMed ID: 38605898
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Multidimensional Hierarchical Fabric-Based Supercapacitor with Bionic Fiber Microarrays for Smart Wearable Electronic Textiles.
    Li Z; Ma Y; Wang L; Du X; Zhu S; Zhang X; Qu L; Tian M
    ACS Appl Mater Interfaces; 2019 Dec; 11(49):46278-46285. PubMed ID: 31713408
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Core-shell heterostructured Ni(OH)
    Zhou X; Chen B; Wang W; Liu L; Li X; Chen L; Li Y; Xia Y; Ci L
    J Colloid Interface Sci; 2024 May; 661():781-792. PubMed ID: 38325176
    [TBL] [Abstract][Full Text] [Related]  

  • 27. All Hierarchical Core-Shell Heterostructures as Novel Binder-Free Electrode Materials for Ultrahigh-Energy-Density Wearable Asymmetric Supercapacitors.
    Li Q; Zhang Q; Sun J; Liu C; Guo J; He B; Zhou Z; Man P; Li C; Xie L; Yao Y
    Adv Sci (Weinh); 2019 Jan; 6(2):1801379. PubMed ID: 30693184
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Scalable Production of 2D Material Heterostructure Textiles for High-Performance Wearable Supercapacitors.
    Islam MR; Afroj S; Karim N
    ACS Nano; 2023 Sep; 17(18):18481-18493. PubMed ID: 37695696
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fabrication of three-dimensional composite textile electrodes by metal-organic framework, zinc oxide, graphene and polyaniline for all-solid-state supercapacitors.
    Liu YN; Jin LN; Wang HT; Kang XH; Bian SW
    J Colloid Interface Sci; 2018 Nov; 530():29-36. PubMed ID: 29960905
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Design and Testing of Autonomous Chargeable and Wearable Sweat/Ionic Liquid-Based Supercapacitors.
    Selvam S; Park YK; Yim JH
    Adv Sci (Weinh); 2022 Sep; 9(25):e2201890. PubMed ID: 35810477
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Alternately Dipping Method to Prepare Graphene Fiber Electrodes for Ultra-high-Capacitance Fiber Supercapacitors.
    Qu G; Zhou Y; Zhang J; Xiong L; Yue Q; Kang Y
    iScience; 2020 Aug; 23(8):101396. PubMed ID: 32777775
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Iron oxides nanobelt arrays rooted in nanoporous surface of carbon tube textile as stretchable and robust electrodes for flexible supercapacitors with ultrahigh areal energy density and remarkable cycling-stability.
    Ding Y; Tang S; Han R; Zhang S; Pan G; Meng X
    Sci Rep; 2020 Jul; 10(1):11023. PubMed ID: 32620806
    [TBL] [Abstract][Full Text] [Related]  

  • 33. High Electrochemical Capacity MnO
    Tian X; Cheng X; Liao S; Chen J; Lv P; Wei Q
    ACS Appl Mater Interfaces; 2023 Oct; ():. PubMed ID: 37908058
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Three-Dimensional Hierarchically Porous Graphene Fiber-Shaped Supercapacitors with High Specific Capacitance and Rate Capability.
    Lu C; Meng J; Zhang J; Chen X; Du M; Chen Y; Hou C; Wang J; Ju A; Wang X; Qiu Y; Wang S; Zhang K
    ACS Appl Mater Interfaces; 2019 Jul; 11(28):25205-25217. PubMed ID: 31268652
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Hydrothermally Activated Graphene Fiber Fabrics for Textile Electrodes of Supercapacitors.
    Li Z; Huang T; Gao W; Xu Z; Chang D; Zhang C; Gao C
    ACS Nano; 2017 Nov; 11(11):11056-11065. PubMed ID: 29035519
    [TBL] [Abstract][Full Text] [Related]  

  • 36. High energy storage quasi-solid-state supercapacitor enabled by metal chalcogenide nanowires and iron-based nitrogen-doped graphene nanostructures.
    Bahaa A; Abdelkareem MA; Al Naqbi H; Yousef Mohamed A; Shinde PA; Yousef BAA; Sayed ET; Alawadhi H; Chae KJ; Al-Asheh S; Olabi AG
    J Colloid Interface Sci; 2022 Feb; 608(Pt 1):711-719. PubMed ID: 34634546
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Localized Electron Density Regulation Effect for Promoting Solid-Liquid Ion Adsorption to Enhance Areal Capacitance of Micro-Supercapacitors.
    Zhao Z; Wang Z; Yu Y; Hu Y
    Small; 2023 Oct; 19(41):e2302489. PubMed ID: 37291975
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Interfacial Engineered Polyaniline/Sulfur-Doped TiO
    Li C; Wang Z; Li S; Cheng J; Zhang Y; Zhou J; Yang D; Tong DG; Wang B
    ACS Appl Mater Interfaces; 2018 May; 10(21):18390-18399. PubMed ID: 29727153
    [TBL] [Abstract][Full Text] [Related]  

  • 39. High-energy asymmetric supercapacitors based on free-standing hierarchical Co-Mo-S nanosheets with enhanced cycling stability.
    Balamurugan J; Li C; Peera SG; Kim NH; Lee JH
    Nanoscale; 2017 Sep; 9(36):13747-13759. PubMed ID: 28884774
    [TBL] [Abstract][Full Text] [Related]  

  • 40. MoS
    Pi X; Sun X; Wang R; Chen C; Wu S; Zhan F; Zhong J; Wang Q; Ken Ostrikov K
    J Colloid Interface Sci; 2023 Jan; 629(Pt B):227-237. PubMed ID: 36152579
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.