These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 38899010)

  • 1. Plasmonic dielectric antennas for hybrid optical nanotweezing and optothermoelectric manipulation of single nanosized extracellular vesicles.
    Hong C; Hong I; Jiang Y; Ndukaife JC
    Adv Opt Mater; 2024 Apr; 12(12):. PubMed ID: 38899010
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiplexed Near-Field Optical Trapping Exploiting Anapole States.
    Conteduca D; Brunetti G; Barth I; Quinn SD; Ciminelli C; Krauss TF
    ACS Nano; 2023 Sep; 17(17):16695-16702. PubMed ID: 37603833
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anapole-Assisted Low-Power Optical Trapping of Nanoscale Extracellular Vesicles and Particles.
    Hong I; Hong C; Tutanov OS; Massick C; Castleberry M; Zhang Q; Jeppesen DK; Higginbotham JN; Franklin JL; Vickers K; Coffey RJ; Ndukaife JC
    Nano Lett; 2023 Aug; 23(16):7500-7507. PubMed ID: 37552655
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Doubly mirror-induced electric and magnetic anapole modes in metal-dielectric-metal nanoresonators.
    Yao J; Li B; Cai G; Liu QH
    Opt Lett; 2021 Feb; 46(3):576-579. PubMed ID: 33528412
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Scalable trapping of single nanosized extracellular vesicles using plasmonics.
    Hong C; Ndukaife JC
    Nat Commun; 2023 Aug; 14(1):4801. PubMed ID: 37558710
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanoradiator-Mediated Deterministic Opto-Thermoelectric Manipulation.
    Liu Y; Lin L; Bangalore Rajeeva B; Jarrett JW; Li X; Peng X; Kollipara P; Yao K; Akinwande D; Dunn AK; Zheng Y
    ACS Nano; 2018 Oct; 12(10):10383-10392. PubMed ID: 30226980
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metal-dielectric hybrid nanoantennas for efficient frequency conversion at the anapole mode.
    Gili VF; Ghirardini L; Rocco D; Marino G; Favero I; Roland I; Pellegrini G; Duò L; Finazzi M; Carletti L; Locatelli A; Lemaître A; Neshev D; De Angelis C; Leo G; Celebrano M
    Beilstein J Nanotechnol; 2018; 9():2306-2314. PubMed ID: 30202699
    [No Abstract]   [Full Text] [Related]  

  • 8. Photonic and Plasmonic Nanotweezing of Nano- and Microscale Particles.
    Conteduca D; Dell'Olio F; Krauss TF; Ciminelli C
    Appl Spectrosc; 2017 Mar; 71(3):367-390. PubMed ID: 28287314
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantifying the Role of the Surfactant and the Thermophoretic Force in Plasmonic Nano-optical Trapping.
    Jiang Q; Rogez B; Claude JB; Baffou G; Wenger J
    Nano Lett; 2020 Dec; 20(12):8811-8817. PubMed ID: 33237789
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three-dimensional manipulation with scanning near-field optical nanotweezers.
    Berthelot J; Aćimović SS; Juan ML; Kreuzer MP; Renger J; Quidant R
    Nat Nanotechnol; 2014 Apr; 9(4):295-9. PubMed ID: 24584272
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Utilization of plasmonic and photonic crystal nanostructures for enhanced micro- and nanoparticle manipulation.
    Simmons CS; Knouf EC; Tewari M; Lin LY
    J Vis Exp; 2011 Sep; (55):. PubMed ID: 21988841
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optical Anapole Metamaterial.
    Wu PC; Liao CY; Savinov V; Chung TL; Chen WT; Huang YW; Wu PR; Chen YH; Liu AQ; Zheludev NI; Tsai DP
    ACS Nano; 2018 Feb; 12(2):1920-1927. PubMed ID: 29376312
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mirror-Enhanced Plasmonic Nanoaperture for Ultrahigh Optical Force Generation with Minimal Heat Generation.
    Anyika T; Hong I; Ndukaife JC
    Nano Lett; 2023 Dec; 23(24):11416-11423. PubMed ID: 37987748
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Toward Lossless Infrared Optical Trapping of Small Nanoparticles Using Nonradiative Anapole Modes.
    Hernández-Sarria JJ; Oliveira ON; Mejía-Salazar JR
    Phys Rev Lett; 2021 Oct; 127(18):186803. PubMed ID: 34767388
    [TBL] [Abstract][Full Text] [Related]  

  • 15. All optical dynamic nanomanipulation with active colloidal tweezers.
    Ghosh S; Ghosh A
    Nat Commun; 2019 Sep; 10(1):4191. PubMed ID: 31519902
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plasmonic optical trapping of nanoparticles using T-shaped copper nanoantennas.
    Li R; Zhao Y; Li R; Liu H; Ge Y; Xu Z
    Opt Express; 2021 Mar; 29(7):9826-9835. PubMed ID: 33820135
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stand-off trapping and manipulation of sub-10 nm objects and biomolecules using opto-thermo-electrohydrodynamic tweezers.
    Hong C; Yang S; Ndukaife JC
    Nat Nanotechnol; 2020 Nov; 15(11):908-913. PubMed ID: 32868919
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Towards nano-optical tweezers with graphene plasmons: Numerical investigation of trapping 10-nm particles with mid-infrared light.
    Zhang J; Liu W; Zhu Z; Yuan X; Qin S
    Sci Rep; 2016 Dec; 6():38086. PubMed ID: 27905527
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Circular nanocavity substrate-assisted plasmonic tip for its enhancement in nanofocusing and optical trapping.
    Lu F; Zhang W; Sun L; Mei T; Yuan X
    Opt Express; 2021 Nov; 29(23):37515-37524. PubMed ID: 34808821
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Light emission driven by magnetic and electric toroidal dipole resonances in a silicon metasurface.
    Cui C; Yuan S; Qiu X; Zhu L; Wang Y; Li Y; Song J; Huang Q; Zeng C; Xia J
    Nanoscale; 2019 Aug; 11(30):14446-14454. PubMed ID: 31334735
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.