These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 38899149)

  • 1. Synthetic mucus barrier arrays as a nanoparticle formulation screening platform.
    Zou H; Boboltz A; Cheema Y; Song D; Cahn D; Duncan GA
    RSC Pharm; 2024 Jun; 1(2):218-226. PubMed ID: 38899149
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthetic mucus barrier arrays as a nanoparticle formulation screening platform.
    Zou H; Boboltz A; Cheema Y; Song D; Duncan GA
    bioRxiv; 2023 Nov; ():. PubMed ID: 38076819
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimisation of a High-Throughput Model for Mucus Permeation and Nanoparticle Discrimination Using Biosimilar Mucus.
    Wright L; Barnes TJ; Joyce P; Prestidge CA
    Pharmaceutics; 2022 Nov; 14(12):. PubMed ID: 36559151
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanoparticle-Mediated Strategies for Enhanced Drug Penetration and Retention in the Airway Mucosa.
    Yan X; Sha X
    Pharmaceutics; 2023 Oct; 15(10):. PubMed ID: 37896217
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of Surface Polyethylene Glycol (PEG) Density on Biodegradable Nanoparticle Transport in Mucus ex Vivo and Distribution in Vivo.
    Xu Q; Ensign LM; Boylan NJ; Schön A; Gong X; Yang JC; Lamb NW; Cai S; Yu T; Freire E; Hanes J
    ACS Nano; 2015 Sep; 9(9):9217-27. PubMed ID: 26301576
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Untangling Mucosal Drug Delivery: Engineering, Designing, and Testing Nanoparticles to Overcome the Mucus Barrier.
    Watchorn J; Clasky AJ; Prakash G; Johnston IAE; Chen PZ; Gu FX
    ACS Biomater Sci Eng; 2022 Apr; 8(4):1396-1426. PubMed ID: 35294187
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling of nanoparticle transport through the female reproductive tract for the treatment of infectious diseases.
    Sims LB; Miller HA; Halwes ME; Steinbach-Rankins JM; Frieboes HB
    Eur J Pharm Biopharm; 2019 May; 138():37-47. PubMed ID: 30195726
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anti-PEG antibodies alter the mobility and biodistribution of densely PEGylated nanoparticles in mucus.
    Henry CE; Wang YY; Yang Q; Hoang T; Chattopadhyay S; Hoen T; Ensign LM; Nunn KL; Schroeder H; McCallen J; Moench T; Cone R; Roffler SR; Lai SK
    Acta Biomater; 2016 Oct; 43():61-70. PubMed ID: 27424083
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancing nanoparticle penetration through airway mucus to improve drug delivery efficacy in the lung.
    Chen D; Liu J; Wu J; Suk JS
    Expert Opin Drug Deliv; 2021 May; 18(5):595-606. PubMed ID: 33218265
    [No Abstract]   [Full Text] [Related]  

  • 10. The properties of the mucus barrier, a unique gel--how can nanoparticles cross it?
    Pearson JP; Chater PI; Wilcox MD
    Ther Deliv; 2016; 7(4):229-44. PubMed ID: 27010985
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Advanced materials for drug delivery across mucosal barriers.
    Bandi SP; Bhatnagar S; Venuganti VVK
    Acta Biomater; 2021 Jan; 119():13-29. PubMed ID: 33141051
    [TBL] [Abstract][Full Text] [Related]  

  • 12. "Mucus-on-Chip": A new tool to study the dynamic penetration of nanoparticulate drug carriers into mucus.
    Jia Z; Guo Z; Yang CT; Prestidge C; Thierry B
    Int J Pharm; 2021 Apr; 598():120391. PubMed ID: 33621642
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A membrane-free microfluidic approach to mucus permeation for efficient differentiation of mucoadhesive and mucopermeating nanoparticulate systems.
    Wright L; Wignall A; Jõemetsa S; Joyce P; Prestidge CA
    Drug Deliv Transl Res; 2023 Apr; 13(4):1088-1101. PubMed ID: 36520273
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mucus-penetrating nanoparticles for drug and gene delivery to mucosal tissues.
    Lai SK; Wang YY; Hanes J
    Adv Drug Deliv Rev; 2009 Feb; 61(2):158-71. PubMed ID: 19133304
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanoparticle penetration of human cervicovaginal mucus: the effect of polyvinyl alcohol.
    Yang M; Lai SK; Yu T; Wang YY; Happe C; Zhong W; Zhang M; Anonuevo A; Fridley C; Hung A; Fu J; Hanes J
    J Control Release; 2014 Oct; 192():202-8. PubMed ID: 25090196
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PEGylation for enhancing nanoparticle diffusion in mucus.
    Huckaby JT; Lai SK
    Adv Drug Deliv Rev; 2018 Jan; 124():125-139. PubMed ID: 28882703
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of mucus as an invisible cloak to transepithelial drug delivery by nanoparticles.
    García-Díaz M; Birch D; Wan F; Nielsen HM
    Adv Drug Deliv Rev; 2018 Jan; 124():107-124. PubMed ID: 29117511
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thiolated Nanoparticles Overcome the Mucus Barrier and Epithelial Barrier for Oral Delivery of Insulin.
    Zhou S; Deng H; Zhang Y; Wu P; He B; Dai W; Zhang H; Zhang Q; Zhao R; Wang X
    Mol Pharm; 2020 Jan; 17(1):239-250. PubMed ID: 31800258
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic mucus penetrating microspheres for efficient pulmonary delivery and enhanced efficacy of host defence peptide (HDP) in experimental tuberculosis.
    Sharma A; Vaghasiya K; Gupta P; Singh AK; Gupta UD; Verma RK
    J Control Release; 2020 Aug; 324():17-33. PubMed ID: 32418903
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biodegradable polymer nanoparticles that rapidly penetrate the human mucus barrier.
    Tang BC; Dawson M; Lai SK; Wang YY; Suk JS; Yang M; Zeitlin P; Boyle MP; Fu J; Hanes J
    Proc Natl Acad Sci U S A; 2009 Nov; 106(46):19268-73. PubMed ID: 19901335
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.