These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 38899149)

  • 21. Rotation-Facilitated Rapid Transport of Nanorods in Mucosal Tissues.
    Yu M; Wang J; Yang Y; Zhu C; Su Q; Guo S; Sun J; Gan Y; Shi X; Gao H
    Nano Lett; 2016 Nov; 16(11):7176-7182. PubMed ID: 27700115
    [TBL] [Abstract][Full Text] [Related]  

  • 22. An experimental and theoretical approach to understand the interaction between particles and mucosal tissues.
    Arzi RS; Davidovich-Pinhas M; Cohen N; Sosnik A
    Acta Biomater; 2023 Mar; 158():449-462. PubMed ID: 36596435
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mucus-PVPA (mucus Phospholipid Vesicle-based Permeation Assay): An artificial permeability tool for drug screening and formulation development.
    Falavigna M; Klitgaard M; Brase C; Ternullo S; Škalko-Basnet N; Flaten GE
    Int J Pharm; 2018 Feb; 537(1-2):213-222. PubMed ID: 29288094
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Engineering the Mucus Barrier.
    Carlson TL; Lock JY; Carrier RL
    Annu Rev Biomed Eng; 2018 Jun; 20():197-220. PubMed ID: 29865871
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Impact of mucus modulation by
    Meziu E; Shehu K; Koch M; Schneider M; Kraegeloh A
    Int J Pharm X; 2023 Dec; 6():100212. PubMed ID: 37771516
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Rapid transport of muco-inert nanoparticles in cystic fibrosis sputum treated with N-acetyl cysteine.
    Suk JS; Lai SK; Boylan NJ; Dawson MR; Boyle MP; Hanes J
    Nanomedicine (Lond); 2011 Feb; 6(2):365-75. PubMed ID: 21385138
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Impact of PEGylation on an antibody-loaded nanoparticle-based drug delivery system for the treatment of inflammatory bowel disease.
    Shrestha N; Xu Y; Prévost JRC; McCartney F; Brayden D; Frédérick R; Beloqui A; Préat V
    Acta Biomater; 2022 Mar; 140():561-572. PubMed ID: 34923097
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mucus as barrier for drug delivery by nanoparticles.
    Fröhlich E; Roblegg E
    J Nanosci Nanotechnol; 2014 Jan; 14(1):126-36. PubMed ID: 24730255
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Modulating intestinal mucus barrier for nanoparticles penetration by surfactants.
    Zhang X; Dong W; Cheng H; Zhang M; Kou Y; Guan J; Liu Q; Gao M; Wang X; Mao S
    Asian J Pharm Sci; 2019 Sep; 14(5):543-551. PubMed ID: 32104481
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Nano-carrier systems: Strategies to overcome the mucus gel barrier.
    Dünnhaupt S; Kammona O; Waldner C; Kiparissides C; Bernkop-Schnürch A
    Eur J Pharm Biopharm; 2015 Oct; 96():447-53. PubMed ID: 25712487
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Vaginal drug delivery: strategies and concerns in polymeric nanoparticle development.
    Wong TW; Dhanawat M; Rathbone MJ
    Expert Opin Drug Deliv; 2014 Sep; 11(9):1419-34. PubMed ID: 24960192
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Size shifting of solid lipid nanoparticle system triggered by alkaline phosphatase for site specific mucosal drug delivery.
    Le-Vinh B; Steinbring C; Wibel R; Friedl JD; Bernkop-Schnürch A
    Eur J Pharm Biopharm; 2021 Jun; 163():109-119. PubMed ID: 33775852
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mucus as a barrier to drug delivery – understanding and mimicking the barrier properties.
    Boegh M; Nielsen HM
    Basic Clin Pharmacol Toxicol; 2015 Mar; 116(3):179-86. PubMed ID: 25349046
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Coarse-grained modeling and dynamics tracking of nanoparticles diffusion in human gut mucus.
    Zhao L; Arias SL; Zipfel W; Brito IL; Yeo J
    Int J Biol Macromol; 2024 May; 267(Pt 2):131434. PubMed ID: 38614182
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The impact of gastrointestinal mucus on nanoparticle penetration - in vitro evaluation of mucus-penetrating nanoparticles for photodynamic therapy.
    Mahlert L; Anderski J; Mulac D; Langer K
    Eur J Pharm Sci; 2019 May; 133():28-39. PubMed ID: 30885784
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Probing the interaction of nanoparticles with mucin for drug delivery applications using dynamic light scattering.
    Griffiths PC; Cattoz B; Ibrahim MS; Anuonye JC
    Eur J Pharm Biopharm; 2015 Nov; 97(Pt A):218-22. PubMed ID: 25986588
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Enzymatically active biomimetic micropropellers for the penetration of mucin gels.
    Walker D; Käsdorf BT; Jeong HH; Lieleg O; Fischer P
    Sci Adv; 2015 Dec; 1(11):e1500501. PubMed ID: 26824056
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The role of mucus on drug transport and its potential to affect therapeutic outcomes.
    Murgia X; Loretz B; Hartwig O; Hittinger M; Lehr CM
    Adv Drug Deliv Rev; 2018 Jan; 124():82-97. PubMed ID: 29106910
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Technological strategies to estimate and control diffusive passage times through the mucus barrier in mucosal drug delivery.
    Newby JM; Seim I; Lysy M; Ling Y; Huckaby J; Lai SK; Forest MG
    Adv Drug Deliv Rev; 2018 Jan; 124():64-81. PubMed ID: 29246855
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mucus adhesion vs. mucus penetration? Screening nanomaterials for nasal inhalation by MD simulation.
    Gao X; Xiong Y; Chen H; Gao X; Dai J; Zhang Y; Zou W; Gao Y; Jiang Z; Han B
    J Control Release; 2023 Jan; 353():366-379. PubMed ID: 36462640
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.