These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 38899405)

  • 1. All-Around Electromagnetic Wave Absorber Based on Ni-Zn Ferrite.
    Mandal D; Bhandari B; Mullurkara SV; Ohodnicki PR
    ACS Appl Mater Interfaces; 2024 Jul; 16(26):33846-33854. PubMed ID: 38899405
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural, magnetic, and gigahertz-range electromagnetic wave absorption properties of bulk Ni-Zn ferrite.
    Derakhshani M; Taheri-Nassaj E; Jazirehpour M; Masoudpanah SM
    Sci Rep; 2021 May; 11(1):9468. PubMed ID: 33947912
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multi-layered nano-hollow spheres for efficient electromagnetic wave absorption.
    Gorai A; Mandal D; Mandal K
    Nanotechnology; 2021 Jun; 32(34):. PubMed ID: 34086606
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An investigation of microstructural, magnetic and microwave absorption properties of multi-walled carbon nanotubes/Ni
    Mustaffa MS; Azis RS; Abdullah NH; Ismail I; Ibrahim IR
    Sci Rep; 2019 Oct; 9(1):15523. PubMed ID: 31664142
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A wormhole-like porous carbon/magnetic particles composite as an efficient broadband electromagnetic wave absorber.
    Fang J; Liu T; Chen Z; Wang Y; Wei W; Yue X; Jiang Z
    Nanoscale; 2016 Apr; 8(16):8899-909. PubMed ID: 27072200
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microwave absorption of sandwich structure based on nanocrystalline SrFe12O19, Ni0.5ZnO.5Fe2O4 and alpha-Fe hollow microfibers.
    Yang X; Jing M; Shen X; Meng X; Dong M; Huang D; Wang Y
    J Nanosci Nanotechnol; 2014 Mar; 14(3):2419-24. PubMed ID: 24745241
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication of Electrospun Ni
    Na KH; Jang KP; Kim SW; Choi WY
    Polymers (Basel); 2021 Dec; 13(23):. PubMed ID: 34883751
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-layer structure microwave absorbers based on nanocrystalline alpha-Fe, Fe0.2(Co0.2Ni0.8)0.8 and Ni0.5Zn0.5Fe2O4 porous microfibers.
    Liu H; Meng X; Yang X; Jing M; Shen X; Dong M
    J Nanosci Nanotechnol; 2014 Apr; 14(4):2878-84. PubMed ID: 24734704
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surfactant-assisted synthesis of polythiophene/Ni
    Dar MA; Majid K; Hanief Najar M; Kotnala RK; Shah J; Dhawan SK; Farukh M
    Phys Chem Chem Phys; 2017 Apr; 19(16):10629-10643. PubMed ID: 28397906
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interconnected magnetic carbon@Ni
    Chen X; Wang Y; Liu H; Jin S; Wu G
    J Colloid Interface Sci; 2022 Jan; 606(Pt 1):526-536. PubMed ID: 34411827
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Controllable Architecture of ZnO/FeNi Composites Derived from Trimetallic ZnFeNi Layered Double Hydroxides for High-Performance Electromagnetic Wave Absorbers.
    Gan F; Rao Q; Deng J; Cheng L; Zhong Y; Lu Z; Wang F; Wang J; Zhou H; Rao G
    Small; 2023 Jul; 19(27):e2300257. PubMed ID: 36967536
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tunable magneto-optical and interfacial defects of Nd and Cr-doped bismuth ferrite nanoparticles for microwave absorber applications.
    Yousaf M; Lu Y; Hu E; Wang B; Niaz Akhtar M; Noor A; Akbar M; Yousaf Shah MAK; Wang F; Zhu B
    J Colloid Interface Sci; 2022 Feb; 608(Pt 2):1868-1881. PubMed ID: 34752976
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tunable Twin Matching Frequency (f
    Saini L; Patra MK; Jani RK; Gupta GK; Dixit A; Vadera SR
    Sci Rep; 2017 Mar; 7():44457. PubMed ID: 28294151
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultra-wide bandwidth with enhanced microwave absorption of electroless Ni-P coated tetrapod-shaped ZnO nano- and microstructures.
    Najim M; Modi G; Mishra YK; Adelung R; Singh D; Agarwala V
    Phys Chem Chem Phys; 2015 Sep; 17(35):22923-33. PubMed ID: 26267361
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The In Situ Preparation of Ni-Zn Ferrite Intercalated Expanded Graphite via Thermal Treatment for Improved Radar Attenuation Property.
    Xiang N; Zhou Z; Ma X; Zhang H; Xu X; Chen Y; Guo Z
    Molecules; 2023 May; 28(10):. PubMed ID: 37241869
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Facile Synthesis of Novel Heterostructure Based on SnO2 Nanorods Grown on Submicron Ni Walnut with Tunable Electromagnetic Wave Absorption Capabilities.
    Zhao B; Fan B; Shao G; Zhao W; Zhang R
    ACS Appl Mater Interfaces; 2015 Aug; 7(33):18815-23. PubMed ID: 26259116
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced Electromagnetic Absorption Properties of Commercial Ni/MWCNTs Composites by Adjusting Dielectric Properties.
    Zhao PY; Wang HY; Wang GS
    Front Chem; 2020; 8():97. PubMed ID: 32185159
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Magnetite hollow microspheres with a broad absorption bandwidth of 11.9 GHz: toward promising lightweight electromagnetic microwave absorption.
    Shanenkov I; Sivkov A; Ivashutenko A; Zhuravlev V; Guo Q; Li L; Li G; Wei G; Han W
    Phys Chem Chem Phys; 2017 Aug; 19(30):19975-19983. PubMed ID: 28722037
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Critical Control of Highly Stable Nonstoichiometric Mn-Zn Ferrites with Outstanding Magnetic and Electromagnetic Performance for Gigahertz High-Frequency Applications.
    Yang Y; Liu L; Zhu H; Bao N; Ding J; Chen J; Yu K
    ACS Appl Mater Interfaces; 2020 Apr; 12(14):16609-16619. PubMed ID: 32186841
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improved electromagnetic wave absorption of Co nanoparticles decorated carbon nanotubes derived from synergistic magnetic and dielectric losses.
    Wu N; Lv H; Liu J; Liu Y; Wang S; Liu W
    Phys Chem Chem Phys; 2016 Nov; 18(46):31542-31550. PubMed ID: 27831579
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.