BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 38899462)

  • 1. In vivo proteolytic profiling of the type I and type II metacaspases in Chlamydomonas reinhardtii exposed to salt stress.
    Vergou GA; Bajhaiya AK; Corredor L; Lema Asqui S; Timmerman E; Impens F; Funk C
    Physiol Plant; 2024; 176(3):e14401. PubMed ID: 38899462
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermoprotection by a cell membrane-localized metacaspase in a green alga.
    Zou Y; Sabljić I; Horbach N; Dauphinee AN; Åsman A; Sancho Temino L; Minina EA; Drag M; Stael S; Poreba M; Ståhlberg J; Bozhkov PV
    Plant Cell; 2024 Feb; 36(3):665-687. PubMed ID: 37971931
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Expression and Purification of the Type II Metacaspase from a Unicellular Green Alga Chlamydomonas reinhardtii.
    Sabljić I; Zou Y; Klemenčič M; Funk C; Ståhlberg J; Bozhkov P
    Methods Mol Biol; 2022; 2447():13-20. PubMed ID: 35583769
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plant type I metacaspases are proteolytically active proteases despite their hydrophobic nature.
    van Midden KP; Peric T; Klemenčič M
    FEBS Lett; 2021 Sep; 595(17):2237-2247. PubMed ID: 34318487
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Caspases in plants: metacaspase gene family in plant stress responses.
    Fagundes D; Bohn B; Cabreira C; Leipelt F; Dias N; Bodanese-Zanettini MH; Cagliari A
    Funct Integr Genomics; 2015 Nov; 15(6):639-49. PubMed ID: 26277721
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plant metacaspase activation and activity.
    Minina EA; Stael S; Van Breusegem F; Bozhkov PV
    Methods Mol Biol; 2014; 1133():237-53. PubMed ID: 24567106
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metacaspases.
    Tsiatsiani L; Van Breusegem F; Gallois P; Zavialov A; Lam E; Bozhkov PV
    Cell Death Differ; 2011 Aug; 18(8):1279-88. PubMed ID: 21597462
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calcium mediates the cellular response of Chlamydomonas reinhardtii to the emerging aquatic pollutant Triclosan.
    González-Pleiter M; Rioboo C; Reguera M; Abreu I; Leganés F; Cid Á; Fernández-Piñas F
    Aquat Toxicol; 2017 May; 186():50-66. PubMed ID: 28249228
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proteome dynamics and early salt stress response of the photosynthetic organism Chlamydomonas reinhardtii.
    Mastrobuoni G; Irgang S; Pietzke M; Assmus HE; Wenzel M; Schulze WX; Kempa S
    BMC Genomics; 2012 May; 13():215. PubMed ID: 22651860
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of Salt Stress Responding Genes Using Transcriptome Analysis in Green Alga Chlamydomonas reinhardtii.
    Wang N; Qian Z; Luo M; Fan S; Zhang X; Zhang L
    Int J Mol Sci; 2018 Oct; 19(11):. PubMed ID: 30373210
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The metacaspase gene family of Vitis vinifera L.: characterization and differential expression during ovule abortion in stenospermocarpic seedless grapes.
    Zhang C; Gong P; Wei R; Li S; Zhang X; Yu Y; Wang Y
    Gene; 2013 Oct; 528(2):267-76. PubMed ID: 23845786
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Iron deficiency response gene Femu2 plays a positive role in protecting Chlamydomonas reinhardtii against salt stress.
    Li Y; Fei X; Wu X; Deng X
    Biochim Biophys Acta Gen Subj; 2017 Jan; 1861(1 Pt A):3345-3354. PubMed ID: 27569901
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of bZIP Transcription Factor Family and Their Expressions under Salt Stress in
    Ji C; Mao X; Hao J; Wang X; Xue J; Cui H; Li R
    Int J Mol Sci; 2018 Sep; 19(9):. PubMed ID: 30227676
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evolution and structural diversity of metacaspases.
    Klemenčič M; Funk C
    J Exp Bot; 2019 Apr; 70(7):2039-2047. PubMed ID: 30921456
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of alternative oxidase 1 in Chlamydomonas reinhardtii during sulfur starvation.
    Zalutskaya Z; Filina V; Ostroukhova M; Ermilova E
    Eur J Protistol; 2018 Apr; 63():26-33. PubMed ID: 29407609
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proteomic analysis of salinity-stressed Chlamydomonas reinhardtii revealed differential suppression and induction of a large number of important housekeeping proteins.
    Yokthongwattana C; Mahong B; Roytrakul S; Phaonaklop N; Narangajavana J; Yokthongwattana K
    Planta; 2012 Mar; 235(3):649-59. PubMed ID: 22278608
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulating Death and Disease: Exploring the Roles of Metacaspases in Plants and Fungi.
    Garcia N; Kalicharan RE; Kinch L; Fernandez J
    Int J Mol Sci; 2022 Dec; 24(1):. PubMed ID: 36613753
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New insights into AOX2 transcriptional regulation in Chlamydomonas reinhardtii.
    Ostroukhova M; Zalutskaya Z; Ermilova E
    Eur J Protistol; 2017 Apr; 58():1-8. PubMed ID: 28088729
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rubisco activase is required for optimal photosynthesis in the green alga Chlamydomonas reinhardtii in a low-CO(2) atmosphere.
    Pollock SV; Colombo SL; Prout DL; Godfrey AC; Moroney JV
    Plant Physiol; 2003 Dec; 133(4):1854-61. PubMed ID: 14605215
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of early cold stress on gene expression in Chlamydomonas reinhardtii.
    Li L; Peng H; Tan S; Zhou J; Fang Z; Hu Z; Gao L; Li T; Zhang W; Chen L
    Genomics; 2020 Mar; 112(2):1128-1138. PubMed ID: 31251979
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.