BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 38899526)

  • 1. Whole-Cell Bioconversion Systems for Efficient Synthesis of Monolignols from L-Tyrosine in
    Zhao M; Zhang B; Wu X; Xiao Y
    J Agric Food Chem; 2024 Jul; 72(26):14799-14808. PubMed ID: 38899526
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolic engineering of Escherichia coli for microbial synthesis of monolignols.
    Chen Z; Sun X; Li Y; Yan Y; Yuan Q
    Metab Eng; 2017 Jan; 39():102-109. PubMed ID: 27816771
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carboxylic acid reductase-dependent biosynthesis of eugenol and related allylphenols.
    Hanko EKR; Valdehuesa KNG; Verhagen KJA; Chromy J; Stoney RA; Chua J; Yan C; Roubos JA; Schmitz J; Breitling R
    Microb Cell Fact; 2023 Nov; 22(1):238. PubMed ID: 37980525
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three steps in one pot: biosynthesis of 4-hydroxycinnamyl alcohols using immobilized whole cells of two genetically engineered Escherichia coli strains.
    Liu S; Liu J; Hou J; Chao N; Gai Y; Jiang X
    Microb Cell Fact; 2017 Jun; 16(1):104. PubMed ID: 28606145
    [TBL] [Abstract][Full Text] [Related]  

  • 5. De novo biosynthesis of pterostilbene in an Escherichia coli strain using a new resveratrol O-methyltransferase from Arabidopsis.
    Heo KT; Kang SY; Hong YS
    Microb Cell Fact; 2017 Feb; 16(1):30. PubMed ID: 28202018
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcriptional control of monolignol biosynthesis in Pinus taeda: factors affecting monolignol ratios and carbon allocation in phenylpropanoid metabolism.
    Anterola AM; Jeon JH; Davin LB; Lewis NG
    J Biol Chem; 2002 May; 277(21):18272-80. PubMed ID: 11891223
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A polymer of caffeyl alcohol in plant seeds.
    Chen F; Tobimatsu Y; Havkin-Frenkel D; Dixon RA; Ralph J
    Proc Natl Acad Sci U S A; 2012 Jan; 109(5):1772-7. PubMed ID: 22307645
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineering
    Zeng B; Lai Y; Liu L; Cheng J; Zhang Y; Yuan J
    J Agric Food Chem; 2020 Jul; 68(29):7691-7696. PubMed ID: 32578426
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Production of 3-O-xylosyl quercetin in Escherichia coli.
    Pandey RP; Malla S; Simkhada D; Kim BG; Sohng JK
    Appl Microbiol Biotechnol; 2013 Mar; 97(5):1889-901. PubMed ID: 23053089
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Trends in lignin modification: a comprehensive analysis of the effects of genetic manipulations/mutations on lignification and vascular integrity.
    Anterola AM; Lewis NG
    Phytochemistry; 2002 Oct; 61(3):221-94. PubMed ID: 12359514
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Production of hydroxycinnamoyl anthranilates from glucose in Escherichia coli.
    Eudes A; Juminaga D; Baidoo EE; Collins FW; Keasling JD; Loqué D
    Microb Cell Fact; 2013 Jun; 12():62. PubMed ID: 23806124
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Establishing an Artificial Pathway for De Novo Biosynthesis of Vanillyl Alcohol in Escherichia coli.
    Chen Z; Shen X; Wang J; Wang J; Zhang R; Rey JF; Yuan Q; Yan Y
    ACS Synth Biol; 2017 Sep; 6(9):1784-1792. PubMed ID: 28586214
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 5-hydroxyconiferyl aldehyde modulates enzymatic methylation for syringyl monolignol formation, a new view of monolignol biosynthesis in angiosperms.
    Li L; Popko JL; Umezawa T; Chiang VL
    J Biol Chem; 2000 Mar; 275(9):6537-45. PubMed ID: 10692459
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pulsed-ozonolysis assisted oxidative treatment of forestry biomass for lignin fractionation.
    Osorio-González CS; Hegde K; Brar SK; Vezina P; Gilbert D; Avalos-Ramírez A
    Bioresour Technol; 2020 Oct; 313():123638. PubMed ID: 32534757
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineering a Synthetic Pathway for Tyrosol Synthesis in
    Lai Y; Chen H; Liu L; Fu B; Wu P; Li W; Hu J; Yuan J
    ACS Synth Biol; 2022 Jan; 11(1):441-447. PubMed ID: 34985865
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of tyrosine ammonia lyases from Flavobacterium johnsonian and Herpetosiphon aurantiacus.
    Virklund A; Jendresen CB; Nielsen AT; Woodley JM
    Biotechnol J; 2023 Nov; 18(11):e2300111. PubMed ID: 37486789
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single-conformation ultraviolet and infrared spectra of jet-cooled monolignols: p-coumaryl alcohol, coniferyl alcohol, and sinapyl alcohol.
    Rodrigo CP; James WH; Zwier TS
    J Am Chem Soc; 2011 Mar; 133(8):2632-41. PubMed ID: 21294542
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [High-throughput screening of Saccharomyces cerevisiae efficiently producing tyrosine].
    Liu T; Li Y; Zhang L; Ding Z; Gu Z; Shi G; Xu S
    Sheng Wu Gong Cheng Xue Bao; 2021 Sep; 37(9):3348-3360. PubMed ID: 34622641
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient and scalable synthesis of 1,5-diamino-2-hydroxy-pentane from L-lysine via cascade catalysis using engineered Escherichia coli.
    Li Y; Zhang A; Hu S; Chen K; Ouyang P
    Microb Cell Fact; 2022 Jul; 21(1):142. PubMed ID: 35842631
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coniferyl aldehyde 5-hydroxylation and methylation direct syringyl lignin biosynthesis in angiosperms.
    Osakabe K; Tsao CC; Li L; Popko JL; Umezawa T; Carraway DT; Smeltzer RH; Joshi CP; Chiang VL
    Proc Natl Acad Sci U S A; 1999 Aug; 96(16):8955-60. PubMed ID: 10430877
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.