These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 38899549)

  • 41. Virtual high-resolution MR angiography from non-angiographic multi-contrast MRIs: synthetic vascular model populations for in-silico trials.
    Xia Y; Ravikumar N; Lassila T; Frangi AF
    Med Image Anal; 2023 Jul; 87():102814. PubMed ID: 37196537
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Two novel PET image restoration methods guided by PET-MR kernels: Application to brain imaging.
    Tahaei MS; Reader AJ; Collins DL
    Med Phys; 2019 May; 46(5):2085-2102. PubMed ID: 30710342
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Segmenting brain tumors from FLAIR MRI using fully convolutional neural networks.
    Ribalta Lorenzo P; Nalepa J; Bobek-Billewicz B; Wawrzyniak P; Mrukwa G; Kawulok M; Ulrych P; Hayball MP
    Comput Methods Programs Biomed; 2019 Jul; 176():135-148. PubMed ID: 31200901
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Convolutional neural network-based approach for segmentation of left ventricle myocardial scar from 3D late gadolinium enhancement MR images.
    Zabihollahy F; White JA; Ukwatta E
    Med Phys; 2019 Apr; 46(4):1740-1751. PubMed ID: 30734937
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Learning-based 3T brain MRI segmentation with guidance from 7T MRI labeling.
    Deng M; Yu R; Wang L; Shi F; Yap PT; Shen D;
    Med Phys; 2016 Dec; 43(12):6588-6597. PubMed ID: 28054724
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Self-attention-based generative adversarial network optimized with color harmony algorithm for brain tumor classification.
    S SP; A S; T K; S D
    Electromagn Biol Med; 2024 Apr; 43(1-2):31-45. PubMed ID: 38369844
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A Robust and Accurate Deep-learning-based Method for the Segmentation of Subcortical Brain: Cross-dataset Evaluation of Generalization Performance.
    Furuhashi N; Okuhata S; Kobayashi T
    Magn Reson Med Sci; 2021 Jun; 20(2):166-174. PubMed ID: 32389928
    [TBL] [Abstract][Full Text] [Related]  

  • 48. BPGAN: Brain PET synthesis from MRI using generative adversarial network for multi-modal Alzheimer's disease diagnosis.
    Zhang J; He X; Qing L; Gao F; Wang B
    Comput Methods Programs Biomed; 2022 Apr; 217():106676. PubMed ID: 35167997
    [TBL] [Abstract][Full Text] [Related]  

  • 49. MRI Gibbs-ringing artifact reduction by means of machine learning using convolutional neural networks.
    Zhang Q; Ruan G; Yang W; Liu Y; Zhao K; Feng Q; Chen W; Wu EX; Feng Y
    Magn Reson Med; 2019 Dec; 82(6):2133-2145. PubMed ID: 31373061
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Synthesizing high-resolution magnetic resonance imaging using parallel cycle-consistent generative adversarial networks for fast magnetic resonance imaging.
    Xie H; Lei Y; Wang T; Roper J; Dhabaan AH; Bradley JD; Liu T; Mao H; Yang X
    Med Phys; 2022 Jan; 49(1):357-369. PubMed ID: 34821395
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Automated histogram-based brain segmentation in T1-weighted three-dimensional magnetic resonance head images.
    Shan ZY; Yue GH; Liu JZ
    Neuroimage; 2002 Nov; 17(3):1587-98. PubMed ID: 12414297
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Denoising of 3D magnetic resonance images using a residual encoder-decoder Wasserstein generative adversarial network.
    Ran M; Hu J; Chen Y; Chen H; Sun H; Zhou J; Zhang Y
    Med Image Anal; 2019 Jul; 55():165-180. PubMed ID: 31085444
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Construction of Sports Training Performance Prediction Model Based on a Generative Adversarial Deep Neural Network Algorithm.
    Li G
    Comput Intell Neurosci; 2022; 2022():1211238. PubMed ID: 35637721
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Inter-scanner reproducibility of brain volumetry: influence of automated brain segmentation software.
    Liu S; Hou B; Zhang Y; Lin T; Fan X; You H; Feng F
    BMC Neurosci; 2020 Sep; 21(1):35. PubMed ID: 32887546
    [TBL] [Abstract][Full Text] [Related]  

  • 55. MR to CT synthesis with multicenter data in the pelvic area using a conditional generative adversarial network.
    Brou Boni KND; Klein J; Vanquin L; Wagner A; Lacornerie T; Pasquier D; Reynaert N
    Phys Med Biol; 2020 Apr; 65(7):075002. PubMed ID: 32053808
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Probabilistic Brain Extraction in MR Images via Conditional Generative Adversarial Networks.
    Moazami S; Ray D; Pelletier D; Oberai AA
    IEEE Trans Med Imaging; 2024 Mar; 43(3):1071-1088. PubMed ID: 37883281
    [TBL] [Abstract][Full Text] [Related]  

  • 57. 3D-DGGAN: A Data-Guided Generative Adversarial Network for High Fidelity in Medical Image Generation.
    Kim J; Li Y; Shin BS
    IEEE J Biomed Health Inform; 2024 May; 28(5):2904-2915. PubMed ID: 38416610
    [TBL] [Abstract][Full Text] [Related]  

  • 58. SUSAN: segment unannotated image structure using adversarial network.
    Liu F
    Magn Reson Med; 2019 May; 81(5):3330-3345. PubMed ID: 30536427
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Synthesizing anonymized and labeled TOF-MRA patches for brain vessel segmentation using generative adversarial networks.
    Kossen T; Subramaniam P; Madai VI; Hennemuth A; Hildebrand K; Hilbert A; Sobesky J; Livne M; Galinovic I; Khalil AA; Fiebach JB; Frey D
    Comput Biol Med; 2021 Apr; 131():104254. PubMed ID: 33618105
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Compensation cycle consistent generative adversarial networks (Comp-GAN) for synthetic CT generation from MR scans with truncated anatomy.
    Zhao Y; Wang H; Yu C; Court LE; Wang X; Wang Q; Pan T; Ding Y; Phan J; Yang J
    Med Phys; 2023 Jul; 50(7):4399-4414. PubMed ID: 36698291
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.