These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 38899797)
1. Predicting spin states of iron porphyrins with DFT methods including crystal packing effects and thermodynamic corrections. Radoń M Phys Chem Chem Phys; 2024 Jul; 26(26):18182-18195. PubMed ID: 38899797 [TBL] [Abstract][Full Text] [Related]
2. Assessment of electronic structure methods for the determination of the ground spin states of Fe(ii), Fe(iii) and Fe(iv) complexes. Verma P; Varga Z; Klein JEMN; Cramer CJ; Que L; Truhlar DG Phys Chem Chem Phys; 2017 May; 19(20):13049-13069. PubMed ID: 28484765 [TBL] [Abstract][Full Text] [Related]
3. Iron porphyrins with different imidazole ligands. A theoretical comparative study. Liao MS; Huang MJ; Watts JD J Phys Chem A; 2010 Sep; 114(35):9554-69. PubMed ID: 20712371 [TBL] [Abstract][Full Text] [Related]
4. Electronic structure of six-coordinate iron(III)-porphyrin NO adducts: the elusive iron(III)-NO(radical) state and its influence on the properties of these complexes. Praneeth VK; Paulat F; Berto TC; George SD; Näther C; Sulok CD; Lehnert N J Am Chem Soc; 2008 Nov; 130(46):15288-303. PubMed ID: 18942830 [TBL] [Abstract][Full Text] [Related]
5. Analysis of the Geometric and Electronic Structure of Spin-Coupled Iron-Sulfur Dimers with Broken-Symmetry DFT: Implications for FeMoco. Benediktsson B; Bjornsson R J Chem Theory Comput; 2022 Mar; 18(3):1437-1457. PubMed ID: 35167749 [TBL] [Abstract][Full Text] [Related]
6. Axial ligand orientations in a distorted porphyrin macrocycle: synthesis, structure, and properties of low-spin bis(imidazole)iron(III) and iron(II) porphyrinates. Patra R; Chaudhary A; Ghosh SK; Rath SP Inorg Chem; 2010 Mar; 49(5):2057-67. PubMed ID: 20128598 [TBL] [Abstract][Full Text] [Related]
7. Electronic structure, spin-states, and spin-crossover reaction of heme-related Fe-porphyrins: a theoretical perspective. Ali ME; Sanyal B; Oppeneer PM J Phys Chem B; 2012 May; 116(20):5849-59. PubMed ID: 22512398 [TBL] [Abstract][Full Text] [Related]
8. Capturing the spin state diversity of iron(III)-aryl porphyrins: OLYP is better than TPSSh. Conradie MM; Conradie J; Ghosh A J Inorg Biochem; 2011 Jan; 105(1):84-91. PubMed ID: 21134606 [TBL] [Abstract][Full Text] [Related]
9. Improving the Accuracy in the Prediction of Transition-Metal Spin-State Energetics Using a Robust Variation-Based Approach: Density Functional Theory, CASPT2 and MC-PDFT Applied to the Case Study of Tris-Diimine Fe(II) Complexes. Paveliuc G; Lawson Daku LM J Phys Chem A; 2024 Oct; 128(39):8404-8420. PubMed ID: 39315737 [TBL] [Abstract][Full Text] [Related]
10. Halide ligated iron porphines: a DFT+U and UB3LYP study. Panchmatia PM; Ali ME; Sanyal B; Oppeneer PM J Phys Chem A; 2010 Dec; 114(51):13381-7. PubMed ID: 21126064 [TBL] [Abstract][Full Text] [Related]
11. Factors affecting the electronic ground state of low-spin iron(III) porphyrin complexes. Ikeue T; Ohgo Y; Saitoh T; Yamaguchi T; Nakamura M Inorg Chem; 2001 Jul; 40(14):3423-34. PubMed ID: 11421688 [TBL] [Abstract][Full Text] [Related]
12. The ground states of iron(III) porphines: role of entropy-enthalpy compensation, Fermi correlation, dispersion, and zero-point energies. Kepp KP J Inorg Biochem; 2011 Oct; 105(10):1286-92. PubMed ID: 21855825 [TBL] [Abstract][Full Text] [Related]
13. Iron(II) and Iron(III) Spin Crossover: Toward an Optimal Density Functional. Siig OS; Kepp KP J Phys Chem A; 2018 Apr; 122(16):4208-4217. PubMed ID: 29630380 [TBL] [Abstract][Full Text] [Related]
14. Metalloporphyrin-Nitroxyl Interactions: The Low-Energy States of Reduced Manganese, Iron, and Cobalt Porphyrin Nitrosyls. Conradie J; Ghosh A J Phys Chem B; 2016 Jun; 120(22):4972-9. PubMed ID: 27245286 [TBL] [Abstract][Full Text] [Related]
15. Investigating the influence of oriented external electric fields on modulating spin-transition temperatures in Fe(II) SCO complexes: a theoretical perspective. Tiwari RK; Paul R; Rajaraman G Dalton Trans; 2024 Sep; 53(35):14623-14633. PubMed ID: 39162581 [TBL] [Abstract][Full Text] [Related]
16. Benchmarking quantum chemistry methods for spin-state energetics of iron complexes against quantitative experimental data. Radoń M Phys Chem Chem Phys; 2019 Feb; 21(9):4854-4870. PubMed ID: 30778468 [TBL] [Abstract][Full Text] [Related]
17. Assessing the performance of approximate density functional theory on 95 experimentally characterized Fe(II) spin crossover complexes. Vennelakanti V; Taylor MG; Nandy A; Duan C; Kulik HJ J Chem Phys; 2023 Jul; 159(2):. PubMed ID: 37431914 [TBL] [Abstract][Full Text] [Related]
18. Role of Spin States in Nitric Oxide Binding to Cobalt(II) and Manganese(II) Porphyrins. Is Tighter Binding Always Stronger? Radoń M Inorg Chem; 2015 Jun; 54(12):5634-45. PubMed ID: 26000802 [TBL] [Abstract][Full Text] [Related]
19. Spinning around in Transition-Metal Chemistry. Swart M; Gruden M Acc Chem Res; 2016 Dec; 49(12):2690-2697. PubMed ID: 27993008 [TBL] [Abstract][Full Text] [Related]
20. Mössbauer quadrupole splittings and electronic structure in heme proteins and model systems: a density functional theory investigation. Zhang Y; Mao J; Godbout N; Oldfield E J Am Chem Soc; 2002 Nov; 124(46):13921-30. PubMed ID: 12431124 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]