These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
111 related articles for article (PubMed ID: 38899838)
1. IDENTIFICATION OF A NOVEL SEPSIS PROGNOSIS MODEL: BASED ON TRANSCRIPTOME AND PROTEOME ANALYSIS. Chen H; Xue H; Tang X; Wang C; Li X; Xie Y Shock; 2024 Aug; 62(2):217-226. PubMed ID: 38899838 [TBL] [Abstract][Full Text] [Related]
2. Identification of a novel sepsis prognosis model and analysis of possible drug application prospects: Based on scRNA-seq and RNA-seq data. He H; Huang T; Guo S; Yu F; Shen H; Shao H; Chen K; Zhang L; Wu Y; Tang X; Yuan X; Liu J; Zhou Y Front Immunol; 2022; 13():888891. PubMed ID: 36389695 [TBL] [Abstract][Full Text] [Related]
3. Construction of a novel mRNA-signature prediction model for prognosis of bladder cancer based on a statistical analysis. Li J; Cao J; Li P; Yao Z; Deng R; Ying L; Tian J BMC Cancer; 2021 Jul; 21(1):858. PubMed ID: 34315402 [TBL] [Abstract][Full Text] [Related]
4. Identification of a survival-related signature for sarcoma patients through integrated transcriptomic and proteomic profiling analyses. Zhang B; Yang L; Wang X; Fu D Gene; 2021 Jan; 764():145105. PubMed ID: 32882333 [TBL] [Abstract][Full Text] [Related]
5. Identification of prognostic gene signature associated with microenvironment of lung adenocarcinoma. Yue C; Ma H; Zhou Y PeerJ; 2019; 7():e8128. PubMed ID: 31803536 [TBL] [Abstract][Full Text] [Related]
6. Development of a novel prognostic signature based on single-cell combined bulk RNA analysis in breast cancer. Xiao Y; Hu G; Xie N; Yin L; Pan Y; Liu C; Lou S; Zhu C J Gene Med; 2024 Feb; 26(2):e3673. PubMed ID: 38404059 [TBL] [Abstract][Full Text] [Related]
7. Construction and validation of a prognostic model based on stage-associated signature genes of head and neck squamous cell carcinoma: a bioinformatics study. Chen L; Zhang X; Lin J; Wen Y; Chen Y; Chen CB Ann Transl Med; 2022 Dec; 10(24):1316. PubMed ID: 36660709 [TBL] [Abstract][Full Text] [Related]
8. Construction of Prognostic Risk Model for Small Cell Lung Cancer Based on Immune-Related Genes. Deng F; Tao F; Xu Z; Zhou J; Gong X; Zhang R Comput Math Methods Med; 2022; 2022():7116080. PubMed ID: 36245844 [TBL] [Abstract][Full Text] [Related]
9. Prediction of Prognosis in Patients with Sepsis Based on Platelet-Related Genes. Jiang J; Zhang J; Wang T; Yu D; Ren X Horm Metab Res; 2024 Jun; ():. PubMed ID: 38870987 [TBL] [Abstract][Full Text] [Related]
10. A Novel Hypoxia-Related Gene Signature with Strong Predicting Ability in Non-Small-Cell Lung Cancer Identified by Comprehensive Profiling. Yang H; Wang Z; Gong L; Huang G; Chen D; Li X; Du F; Lin J; Yang X Int J Genomics; 2022; 2022():8594658. PubMed ID: 35634481 [TBL] [Abstract][Full Text] [Related]
11. Identification of key pathogenic genes of sepsis based on the Gene Expression Omnibus database. Lu X; Xue L; Sun W; Ye J; Zhu Z; Mei H Mol Med Rep; 2018 Feb; 17(2):3042-3054. PubMed ID: 29257295 [TBL] [Abstract][Full Text] [Related]
12. Identification of cuproptosis-related subtypes, construction of a prognosis model, and tumor microenvironment landscape in gastric cancer. Wang J; Qin D; Tao Z; Wang B; Xie Y; Wang Y; Li B; Cao J; Qiao X; Zhong S; Hu X Front Immunol; 2022; 13():1056932. PubMed ID: 36479114 [TBL] [Abstract][Full Text] [Related]
13. Proteomics-based prognostic signature and nomogram construction of hypoxia microenvironment on deteriorating glioblastoma (GBM) pathogenesis. Wen YD; Zhu XS; Li DJ; Zhao Q; Cheng Q; Peng Y Sci Rep; 2021 Aug; 11(1):17170. PubMed ID: 34446747 [TBL] [Abstract][Full Text] [Related]
14. Identification of the prognostic value of ferroptosis-related gene signature in breast cancer patients. Wang D; Wei G; Ma J; Cheng S; Jia L; Song X; Zhang M; Ju M; Wang L; Zhao L; Xin S BMC Cancer; 2021 May; 21(1):645. PubMed ID: 34059009 [TBL] [Abstract][Full Text] [Related]
15. Construction and validation of a metabolic risk model predicting prognosis of colon cancer. Zuo D; Li C; Liu T; Yue M; Zhang J; Ning G Sci Rep; 2021 Mar; 11(1):6837. PubMed ID: 33767290 [TBL] [Abstract][Full Text] [Related]
16. Screening of DNA Damage Repair Genes Involved in the Prognosis of Triple-Negative Breast Cancer Patients Based on Bioinformatics. Wang N; Gu Y; Chi J; Liu X; Xiong Y; Zhong C; Wang F; Wang X; Li L Front Genet; 2021; 12():721873. PubMed ID: 34408776 [No Abstract] [Full Text] [Related]
17. A novel prognostic models for identifying the risk of hepatocellular carcinoma based on epithelial-mesenchymal transition-associated genes. Xiong C; Wang G; Bai D Bioengineered; 2020 Dec; 11(1):1034-1046. PubMed ID: 32951492 [TBL] [Abstract][Full Text] [Related]
18. Bioinformatics analyses of significant genes, related pathways and candidate prognostic biomarkers in glioblastoma. Zhou L; Tang H; Wang F; Chen L; Ou S; Wu T; Xu J; Guo K Mol Med Rep; 2018 Nov; 18(5):4185-4196. PubMed ID: 30132538 [TBL] [Abstract][Full Text] [Related]
19. Construction of a prognostic risk model for Stomach adenocarcinoma based on endoplasmic reticulum stress genes. Li X; Lei Y Wien Klin Wochenschr; 2024 Jun; 136(11-12):319-330. PubMed ID: 37993598 [TBL] [Abstract][Full Text] [Related]
20. A Novel Prognostic Risk Model for Cervical Cancer Based on Immune Checkpoint HLA-G-Driven Differentially Expressed Genes. Xu HH; Wang HL; Xing TJ; Wang XQ Front Immunol; 2022; 13():851622. PubMed ID: 35924232 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]