These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 38899919)

  • 1. Nanoparticle Superlattices Driven by Linker-Mediated Covalent Bonding Interaction.
    Lee SJ; Kim J; Dey J; Jin KS; Choi SM
    J Phys Chem Lett; 2024 Jun; 15(25):6691-6698. PubMed ID: 38899919
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Micelle-Assisted Formation of Nanoparticle Superlattices and Thermally Reversible Symmetry Transitions.
    Ha JM; Lim SH; Dey J; Lee SJ; Lee MJ; Kang SH; Jin KS; Choi SM
    Nano Lett; 2019 Apr; 19(4):2313-2321. PubMed ID: 30673238
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reversible Diffusionless Phase Transitions in 3D Nanoparticle Superlattices.
    Yee DW; Lee MS; An J; Macfarlane RJ
    J Am Chem Soc; 2023 Mar; 145(11):6051-6056. PubMed ID: 36898204
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spontaneous Formation of Highly Stable Nanoparticle Supercrystals Driven by a Covalent Bonding Interaction.
    Dey J; Lee SJ; Kim J; Lim SH; Ha JM; Lee MJ; Choi SM
    Nano Lett; 2021 Jan; 21(1):258-264. PubMed ID: 33372784
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ligand dynamics control structure, elasticity, and high-pressure behavior of nanoparticle superlattices.
    Patra TK; Chan H; Podsiadlo P; Shevchenko EV; Sankaranarayanan SKRS; Narayanan B
    Nanoscale; 2019 Jun; 11(22):10655-10666. PubMed ID: 30839029
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tunable Mechanical Response of Self-Assembled Nanoparticle Superlattices.
    Dhulipala S; Yee DW; Zhou Z; Sun R; Andrade JE; Macfarlane RJ; Portela CM
    Nano Lett; 2023 Jun; 23(11):5155-5163. PubMed ID: 37216440
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Body centered tetragonal nanoparticle superlattices: why and when they form?
    Missoni L; Tagliazucchi M
    Nanoscale; 2021 Sep; 13(34):14371-14381. PubMed ID: 34473819
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulating Multiple Variables To Understand the Nucleation and Growth and Transformation of PbS Nanocrystal Superlattices.
    Wang Z; Bian K; Nagaoka Y; Fan H; Cao YC
    J Am Chem Soc; 2017 Oct; 139(41):14476-14482. PubMed ID: 28953387
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Diffusion-Mediated Nucleation and Growth of fcc and bcc Nanocrystal Superlattices with Designable Assembly of Freestanding 3D Supercrystals.
    Huang X; Suit E; Zhu J; Ge B; Gerdes F; Klinke C; Wang Z
    J Am Chem Soc; 2023 Mar; 145(8):4500-4507. PubMed ID: 36787491
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Erratum: Preparation of Poly(pentafluorophenyl acrylate) Functionalized SiO2 Beads for Protein Purification.
    J Vis Exp; 2019 Apr; (146):. PubMed ID: 31038480
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Understanding Fe
    Huang X; Zhu J; Ge B; Deng K; Wu X; Xiao T; Jiang T; Quan Z; Cao YC; Wang Z
    J Am Chem Soc; 2019 Feb; 141(7):3198-3206. PubMed ID: 30685973
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis of silver nanoparticles coated with OH-functionalized organic groups: dispersion and covalent bonding in epoxy networks.
    dell'Erba IE; Hoppe CE; Williams RJ
    Langmuir; 2010 Feb; 26(3):2042-9. PubMed ID: 19757820
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication of Oriented Colloidal Crystals from Capillary Assembly of Polymer-Tethered Gold Nanoparticles.
    Gao Y; Zhou Y; Xu X; Chen C; Xiong B; Zhu J
    Small; 2022 Apr; 18(13):e2106880. PubMed ID: 35146905
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metal nanocrystal superlattice nucleation and growth.
    Sigman MB; Saunders AE; Korgel BA
    Langmuir; 2004 Feb; 20(3):978-83. PubMed ID: 15773133
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Planning Implications Related to Sterilization-Sensitive Science Investigations Associated with Mars Sample Return (MSR).
    Velbel MA; Cockell CS; Glavin DP; Marty B; Regberg AB; Smith AL; Tosca NJ; Wadhwa M; Kminek G; Meyer MA; Beaty DW; Carrier BL; Haltigin T; Hays LE; Agee CB; Busemann H; Cavalazzi B; Debaille V; Grady MM; Hauber E; Hutzler A; McCubbin FM; Pratt LM; Smith CL; Summons RE; Swindle TD; Tait KT; Udry A; Usui T; Westall F; Zorzano MP
    Astrobiology; 2022 Jun; 22(S1):S112-S164. PubMed ID: 34904892
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Organic mediator-induced structural transformation in superlattices of monolayer-protected gold nanoparticles.
    Yao H; Kuriyama A; Minami T; Kimura K
    J Colloid Interface Sci; 2011 Feb; 354(1):55-60. PubMed ID: 21074166
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis of Long-Term Stable Gold Nanoparticles Benefiting from Red Raspberry (
    Demirbas A; Büyükbezirci K; Celik C; Kislakci E; Karaagac Z; Gokturk E; Kati A; Cimen B; Yilmaz V; Ocsoy I
    ACS Omega; 2019 Nov; 4(20):18637-18644. PubMed ID: 31737823
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gold nanoparticle superlattice crystallization probed in situ.
    Abécassis B; Testard F; Spalla O
    Phys Rev Lett; 2008 Mar; 100(11):115504. PubMed ID: 18517795
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Effect of Mesogenic Coronas on the Type and Anisotropy of Gold Nanoparticle Superlattices: When Can the Tail Wag the Dog?
    Zhao YY; Li Y; Cao Y; Mehl GH; Liu F; Ungar G
    Chemistry; 2023 Feb; 29(11):e202203673. PubMed ID: 36573704
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Controlling structure and porosity in catalytic nanoparticle superlattices with DNA.
    Auyeung E; Morris W; Mondloch JE; Hupp JT; Farha OK; Mirkin CA
    J Am Chem Soc; 2015 Feb; 137(4):1658-62. PubMed ID: 25611764
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.