BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 38900149)

  • 41. The influence of T cell Ig mucin-3 signaling on central nervous system autoimmune disease is determined by the effector function of the pathogenic T cells.
    Lee SY; Goverman JM
    J Immunol; 2013 May; 190(10):4991-9. PubMed ID: 23562810
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Epstein Barr virus infection and immune defense related to HLA-DR15: consequences for multiple sclerosis.
    Olsson T
    Eur J Immunol; 2021 Jan; 51(1):56-59. PubMed ID: 33350470
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Different mechanisms of inflammation induced in virus and autoimmune-mediated models of multiple sclerosis in C57BL6 mice.
    Kishore A; Kanaujia A; Nag S; Rostami AM; Kenyon LC; Shindler KS; Das Sarma J
    Biomed Res Int; 2013; 2013():589048. PubMed ID: 24083230
    [TBL] [Abstract][Full Text] [Related]  

  • 44. UCP2 up-regulation within the course of autoimmune encephalomyelitis correlates with T-lymphocyte activation.
    Smorodchenko A; Schneider S; Rupprecht A; Hilse K; Sasgary S; Zeitz U; Erben RG; Pohl EE
    Biochim Biophys Acta Mol Basis Dis; 2017 Apr; 1863(4):1002-1012. PubMed ID: 28130201
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Mannan-MOG35-55 Reverses Experimental Autoimmune Encephalomyelitis, Inducing a Peripheral Type 2 Myeloid Response, Reducing CNS Inflammation, and Preserving Axons in Spinal Cord Lesions.
    Dagkonaki A; Avloniti M; Evangelidou M; Papazian I; Kanistras I; Tseveleki V; Lampros F; Tselios T; Jensen LT; Möbius W; Ruhwedel T; Androutsou ME; Matsoukas J; Anagnostouli M; Lassmann H; Probert L
    Front Immunol; 2020; 11():575451. PubMed ID: 33329540
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Depletion of CD52-positive cells inhibits the development of central nervous system autoimmune disease, but deletes an immune-tolerance promoting CD8 T-cell population. Implications for secondary autoimmunity of alemtuzumab in multiple sclerosis.
    von Kutzleben S; Pryce G; Giovannoni G; Baker D
    Immunology; 2017 Apr; 150(4):444-455. PubMed ID: 27925187
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Th1 not Th17 cells drive spontaneous MS-like disease despite a functional regulatory T cell response.
    Lowther DE; Chong DL; Ascough S; Ettorre A; Ingram RJ; Boyton RJ; Altmann DM
    Acta Neuropathol; 2013 Oct; 126(4):501-15. PubMed ID: 23934116
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Experimental autoimmune encephalomyelitis mediated by CD8+ T cells.
    Ji Q; Goverman J
    Ann N Y Acad Sci; 2007 Apr; 1103():157-66. PubMed ID: 17376824
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Emerging concepts in autoimmune encephalomyelitis beyond the CD4/T(H)1 paradigm.
    Batoulis H; Addicks K; Kuerten S
    Ann Anat; 2010 Aug; 192(4):179-93. PubMed ID: 20692821
    [TBL] [Abstract][Full Text] [Related]  

  • 50. CD6 as a potential target for treating multiple sclerosis.
    Li Y; Singer NG; Whitbred J; Bowen MA; Fox DA; Lin F
    Proc Natl Acad Sci U S A; 2017 Mar; 114(10):2687-2692. PubMed ID: 28209777
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Lack of junctional adhesion molecule (JAM)-B ameliorates experimental autoimmune encephalomyelitis.
    Tietz S; Périnat T; Greene G; Enzmann G; Deutsch U; Adams R; Imhof B; Aurrand-Lions M; Engelhardt B
    Brain Behav Immun; 2018 Oct; 73():3-20. PubMed ID: 29920328
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Monocyte behaviour and tissue transglutaminase expression during experimental autoimmune encephalomyelitis in transgenic CX3CR1
    Chrobok NL; Jaouen A; Fenrich KK; Bol JG; Wilhelmus MM; Drukarch B; Debarbieux F; van Dam AM
    Amino Acids; 2017 Mar; 49(3):643-658. PubMed ID: 27826792
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The absence of the pro-antioxidant transcription factor Nrf2 exacerbates experimental autoimmune encephalomyelitis.
    Johnson DA; Amirahmadi S; Ward C; Fabry Z; Johnson JA
    Toxicol Sci; 2010 Apr; 114(2):237-46. PubMed ID: 19910389
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Immune regulatory CNS-reactive CD8+T cells in experimental autoimmune encephalomyelitis.
    York NR; Mendoza JP; Ortega SB; Benagh A; Tyler AF; Firan M; Karandikar NJ
    J Autoimmun; 2010 Aug; 35(1):33-44. PubMed ID: 20172692
    [TBL] [Abstract][Full Text] [Related]  

  • 55. HLA-DQB1*0602 determines disease susceptibility in a new "humanized" multiple sclerosis model in HLA-DR15 (DRB1*1501;DQB1*0602) transgenic mice.
    Kaushansky N; Altmann DM; Ascough S; David CS; Lassmann H; Ben-Nun A
    J Immunol; 2009 Sep; 183(5):3531-41. PubMed ID: 19648275
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Epicutaneous (EC) immunization with myelin basic protein (MBP) induces TCRalphabeta+ CD4+ CD8+ double positive suppressor cells that protect from experimental autoimmune encephalomyelitis (EAE).
    Tutaj M; Szczepanik M
    J Autoimmun; 2007 Jun; 28(4):208-15. PubMed ID: 17442539
    [TBL] [Abstract][Full Text] [Related]  

  • 57. CCR2-dependent dendritic cell accumulation in the central nervous system during early effector experimental autoimmune encephalomyelitis is essential for effector T cell restimulation in situ and disease progression.
    Clarkson BD; Walker A; Harris MG; Rayasam A; Sandor M; Fabry Z
    J Immunol; 2015 Jan; 194(2):531-41. PubMed ID: 25505278
    [TBL] [Abstract][Full Text] [Related]  

  • 58. CNS-resident classical DCs play a critical role in CNS autoimmune disease.
    Giles DA; Duncker PC; Wilkinson NM; Washnock-Schmid JM; Segal BM
    J Clin Invest; 2018 Dec; 128(12):5322-5334. PubMed ID: 30226829
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The CD8 T Cell-Epstein-Barr Virus-B Cell Trialogue: A Central Issue in Multiple Sclerosis Pathogenesis.
    Veroni C; Aloisi F
    Front Immunol; 2021; 12():665718. PubMed ID: 34305896
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The role of CD8 suppressors versus destructors in autoimmune central nervous system inflammation.
    Zozulya AL; Wiendl H
    Hum Immunol; 2008 Nov; 69(11):797-804. PubMed ID: 18723060
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.