These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 38900787)

  • 1. A dynamic foot model for predictive simulations of human gait reveals causal relations between foot structure and whole-body mechanics.
    D'Hondt L; De Groote F; Afschrift M
    PLoS Comput Biol; 2024 Jun; 20(6):e1012219. PubMed ID: 38900787
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of including a mobile arch, toe joint, and joint coupling on predictive neuromuscular simulations of human walking.
    Buchmann A; Wenzler S; Welte L; Renjewski D
    Sci Rep; 2024 Jun; 14(1):14879. PubMed ID: 38937584
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adding Stiffness to the Foot Modulates Soleus Force-Velocity Behaviour during Human Walking.
    Takahashi KZ; Gross MT; van Werkhoven H; Piazza SJ; Sawicki GS
    Sci Rep; 2016 Jul; 6():29870. PubMed ID: 27417976
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of obesity and foot arch height on gait mechanics: A cross-sectional study.
    Kim D; Lewis CL; Gill SV
    PLoS One; 2021; 16(11):e0260398. PubMed ID: 34843563
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic loading of the plantar aponeurosis in walking.
    Erdemir A; Hamel AJ; Fauth AR; Piazza SJ; Sharkey NA
    J Bone Joint Surg Am; 2004 Mar; 86(3):546-52. PubMed ID: 14996881
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The functional importance of human foot muscles for bipedal locomotion.
    Farris DJ; Kelly LA; Cresswell AG; Lichtwark GA
    Proc Natl Acad Sci U S A; 2019 Jan; 116(5):1645-1650. PubMed ID: 30655349
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The influence of push-off timing in a robotic ankle-foot prosthesis on the energetics and mechanics of walking.
    Malcolm P; Quesada RE; Caputo JM; Collins SH
    J Neuroeng Rehabil; 2015 Feb; 12():21. PubMed ID: 25889201
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling toes contributes to realistic stance knee mechanics in three-dimensional predictive simulations of walking.
    Falisse A; Afschrift M; De Groote F
    PLoS One; 2022; 17(1):e0256311. PubMed ID: 35077455
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The human foot and heel-sole-toe walking strategy: a mechanism enabling an inverted pendular gait with low isometric muscle force?
    Usherwood JR; Channon AJ; Myatt JP; Rankin JW; Hubel TY
    J R Soc Interface; 2012 Oct; 9(75):2396-402. PubMed ID: 22572024
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The ankle dorsiflexion kinetics demand to increase swing phase foot-ground clearance: implications for assistive device design and energy demands.
    Bajelan S; Sparrow WAT; Begg R
    J Neuroeng Rehabil; 2024 Jun; 21(1):105. PubMed ID: 38907255
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of foot posture on immediate biomechanical responses during walking to variable-stiffness supported lateral wedge insole designs.
    Tse CTF; Ryan MB; Hunt MA
    Gait Posture; 2020 Sep; 81():21-26. PubMed ID: 32650239
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Foot stiffening during the push-off phase of human walking is linked to active muscle contraction, and not the windlass mechanism.
    Farris DJ; Birch J; Kelly L
    J R Soc Interface; 2020 Jul; 17(168):20200208. PubMed ID: 32674708
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Active regulation of longitudinal arch compression and recoil during walking and running.
    Kelly LA; Lichtwark G; Cresswell AG
    J R Soc Interface; 2015 Jan; 12(102):20141076. PubMed ID: 25551151
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intrinsic foot muscles contribute to elastic energy storage and return in the human foot.
    Kelly LA; Farris DJ; Cresswell AG; Lichtwark GA
    J Appl Physiol (1985); 2019 Jan; 126(1):231-238. PubMed ID: 30462568
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Contributions of the individual ankle plantar flexors to support, forward progression and swing initiation during walking.
    Neptune RR; Kautz SA; Zajac FE
    J Biomech; 2001 Nov; 34(11):1387-98. PubMed ID: 11672713
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Passive-dynamic ankle-foot orthosis replicates soleus but not gastrocnemius muscle function during stance in gait: Insights for orthosis prescription.
    Arch ES; Stanhope SJ; Higginson JS
    Prosthet Orthot Int; 2016 Oct; 40(5):606-16. PubMed ID: 26209424
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Does human foot anthropometry relate to plantar flexor fascicle mechanics and metabolic energy cost across various walking speeds?
    Papachatzis N; Ray SF; Takahashi KZ
    J Exp Biol; 2023 May; 226(10):. PubMed ID: 37092255
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural and functional predictors of regional peak pressures under the foot during walking.
    Morag E; Cavanagh PR
    J Biomech; 1999 Apr; 32(4):359-70. PubMed ID: 10213026
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Human leg model predicts ankle muscle-tendon morphology, state, roles and energetics in walking.
    Krishnaswamy P; Brown EN; Herr HM
    PLoS Comput Biol; 2011 Mar; 7(3):e1001107. PubMed ID: 21445231
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.