These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 38900798)

  • 1. Democratizing protein language models with parameter-efficient fine-tuning.
    Sledzieski S; Kshirsagar M; Baek M; Dodhia R; Lavista Ferres J; Berger B
    Proc Natl Acad Sci U S A; 2024 Jun; 121(26):e2405840121. PubMed ID: 38900798
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Democratizing Protein Language Models with Parameter-Efficient Fine-Tuning.
    Sledzieski S; Kshirsagar M; Baek M; Berger B; Dodhia R; Ferres JL
    bioRxiv; 2023 Nov; ():. PubMed ID: 37986761
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessing parameter efficient methods for pre-trained language model in annotating scRNA-seq data.
    Xia Y; Liu Y; Li T; He S; Chang H; Wang Y; Zhang Y; Ge W
    Methods; 2024 Aug; 228():12-21. PubMed ID: 38759908
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Parameter-Efficient Fine-Tuning Enhances Adaptation of Single Cell Large Language Model for Cell Type Identification.
    He F; Fei R; Gao M; Su L; Zhang X; Xu D
    bioRxiv; 2024 Jan; ():. PubMed ID: 38352605
    [TBL] [Abstract][Full Text] [Related]  

  • 5. VetLLM: Large Language Model for Predicting Diagnosis from Veterinary Notes.
    Jiang Y; Irvin JA; Ng AY; Zou J
    Pac Symp Biocomput; 2024; 29():120-133. PubMed ID: 38160274
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A large language model-based generative natural language processing framework fine-tuned on clinical notes accurately extracts headache frequency from electronic health records.
    Chiang CC; Luo M; Dumkrieger G; Trivedi S; Chen YC; Chao CJ; Schwedt TJ; Sarker A; Banerjee I
    Headache; 2024 Apr; 64(4):400-409. PubMed ID: 38525734
    [TBL] [Abstract][Full Text] [Related]  

  • 7. LMCrot: an enhanced protein crotonylation site predictor by leveraging an interpretable window-level embedding from a transformer-based protein language model.
    Pratyush P; Bahmani S; Pokharel S; Ismail HD; Kc DB
    Bioinformatics; 2024 May; 40(5):. PubMed ID: 38662579
    [TBL] [Abstract][Full Text] [Related]  

  • 8. S-PLM: Structure-aware Protein Language Model via Contrastive Learning between Sequence and Structure.
    Wang D; Pourmirzaei M; Abbas UL; Zeng S; Manshour N; Esmaili F; Poudel B; Jiang Y; Shao Q; Chen J; Xu D
    bioRxiv; 2024 May; ():. PubMed ID: 37609352
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Clinical Prompt Learning With Frozen Language Models.
    Taylor N; Zhang Y; Joyce DW; Gao Z; Kormilitzin A; Nevado-Holgado A
    IEEE Trans Neural Netw Learn Syst; 2023 Aug; PP():. PubMed ID: 37566498
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ProtTrans: Toward Understanding the Language of Life Through Self-Supervised Learning.
    Elnaggar A; Heinzinger M; Dallago C; Rehawi G; Wang Y; Jones L; Gibbs T; Feher T; Angerer C; Steinegger M; Bhowmik D; Rost B
    IEEE Trans Pattern Anal Mach Intell; 2022 Oct; 44(10):7112-7127. PubMed ID: 34232869
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protein language models meet reduced amino acid alphabets.
    Ieremie I; Ewing RM; Niranjan M
    Bioinformatics; 2024 Feb; 40(2):. PubMed ID: 38310333
    [TBL] [Abstract][Full Text] [Related]  

  • 12. KEBLM: Knowledge-Enhanced Biomedical Language Models.
    Lai TM; Zhai C; Ji H
    J Biomed Inform; 2023 Jul; 143():104392. PubMed ID: 37211194
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protein-protein interaction extraction by leveraging multiple kernels and parsers.
    Miwa M; Saetre R; Miyao Y; Tsujii J
    Int J Med Inform; 2009 Dec; 78(12):e39-46. PubMed ID: 19501018
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A survey on computational models for predicting protein-protein interactions.
    Hu L; Wang X; Huang YA; Hu P; You ZH
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33693513
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DSSGNN-PPI: A Protein-Protein Interactions prediction model based on Double Structure and Sequence graph neural networks.
    Zhang F; Chang S; Wang B; Zhang X
    Comput Biol Med; 2024 Jul; 177():108669. PubMed ID: 38833802
    [TBL] [Abstract][Full Text] [Related]  

  • 16. All-paths graph kernel for protein-protein interaction extraction with evaluation of cross-corpus learning.
    Airola A; Pyysalo S; Björne J; Pahikkala T; Ginter F; Salakoski T
    BMC Bioinformatics; 2008 Nov; 9 Suppl 11(Suppl 11):S2. PubMed ID: 19025688
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A comprehensive benchmark of kernel methods to extract protein-protein interactions from literature.
    Tikk D; Thomas P; Palaga P; Hakenberg J; Leser U
    PLoS Comput Biol; 2010 Jul; 6(7):e1000837. PubMed ID: 20617200
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neighborhood hash graph kernel for protein-protein interaction extraction.
    Zhang Y; Lin H; Yang Z; Li Y
    J Biomed Inform; 2011 Dec; 44(6):1086-92. PubMed ID: 21884822
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predicted binding site information improves model ranking in protein docking using experimental and computer-generated target structures.
    Maheshwari S; Brylinski M
    BMC Struct Biol; 2015 Nov; 15():23. PubMed ID: 26597230
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling aspects of the language of life through transfer-learning protein sequences.
    Heinzinger M; Elnaggar A; Wang Y; Dallago C; Nechaev D; Matthes F; Rost B
    BMC Bioinformatics; 2019 Dec; 20(1):723. PubMed ID: 31847804
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.