These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 38900817)

  • 21. Intra-Cardiac Flow from Geometry Prescribed Computational Fluid Dynamics: Comparison with Ultrasound Vector Flow Imaging.
    Hvid R; Stuart MB; Jensen JA; Traberg MS
    Cardiovasc Eng Technol; 2023 Aug; 14(4):489-504. PubMed ID: 37322241
    [TBL] [Abstract][Full Text] [Related]  

  • 22. USING CONVOLUTIONAL NEURAL NETWORK-BASED SEGMENTATION FOR IMAGE-BASED COMPUTATIONAL FLUID DYNAMICS SIMULATIONS OF BRAIN ANEURYSMS: INITIAL EXPERIENCE IN AUTOMATED MODEL CREATION.
    Rezaeitaleshmahalleh M; Lyu Z; Mu N; Jiang J
    J Mech Med Biol; 2023 May; 23(4):. PubMed ID: 38523806
    [TBL] [Abstract][Full Text] [Related]  

  • 23. In-vivo assessment of the morphology and hemodynamic functions of the BioValsalva™ composite valve-conduit graft using cardiac magnetic resonance imaging and computational modelling technology.
    Kidher E; Cheng Z; Jarral OA; O'Regan DP; Xu XY; Athanasiou T
    J Cardiothorac Surg; 2014 Dec; 9():193. PubMed ID: 25488105
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A modified method of computed fluid dynamics simulation in abdominal aorta and visceral arteries.
    Shi Y; Peng C; Liu J; Lan H; Li C; Qin W; Yuan T; Kan Y; Wang S; Fu W
    Comput Methods Biomech Biomed Engin; 2021 Nov; 24(15):1718-1729. PubMed ID: 34569360
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A framework for computational fluid dynamic analyses of patient-specific stented coronary arteries from optical coherence tomography images.
    Migliori S; Chiastra C; Bologna M; Montin E; Dubini G; Aurigemma C; Fedele R; Burzotta F; Mainardi L; Migliavacca F
    Med Eng Phys; 2017 Sep; 47():105-116. PubMed ID: 28711588
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fast and Precise Hippocampus Segmentation Through Deep Convolutional Neural Network Ensembles and Transfer Learning.
    Ataloglou D; Dimou A; Zarpalas D; Daras P
    Neuroinformatics; 2019 Oct; 17(4):563-582. PubMed ID: 30877605
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The impact of 4D-Flow MRI spatial resolution on patient-specific CFD simulations of the thoracic aorta.
    Cherry M; Khatir Z; Khan A; Bissell M
    Sci Rep; 2022 Sep; 12(1):15128. PubMed ID: 36068322
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Assessment of boundary conditions for CFD simulation in human carotid artery.
    Xu P; Liu X; Zhang H; Ghista D; Zhang D; Shi C; Huang W
    Biomech Model Mechanobiol; 2018 Dec; 17(6):1581-1597. PubMed ID: 29982960
    [TBL] [Abstract][Full Text] [Related]  

  • 29. 4Dflow-VP-Net: A deep convolutional neural network for noninvasive estimation of relative pressures in stenotic flows from 4D flow MRI.
    Nath R; Kazemi A; Callahan S; Stoddard MF; Amini AA
    Magn Reson Med; 2023 Nov; 90(5):2175-2189. PubMed ID: 37496183
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Human-airway surface mesh smoothing based on graph convolutional neural networks.
    Ho TT; Tran MT; Cui X; Lin CL; Baek S; Kim WJ; Lee CH; Jin GY; Chae KJ; Choi S
    Comput Methods Programs Biomed; 2024 Apr; 246():108061. PubMed ID: 38341897
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Geometrically induced wall shear stress variability in CFD-MRI coupled simulations of blood flow in the thoracic aortas.
    Perinajová R; Juffermans JF; Westenberg JJM; van der Palen RLF; van den Boogaard PJ; Lamb HJ; Kenjereš S
    Comput Biol Med; 2021 Jun; 133():104385. PubMed ID: 33894502
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comparative study of magnetic resonance imaging and image-based computational fluid dynamics for quantification of pulsatile flow in a carotid bifurcation phantom.
    Zhao SZ; Papathanasopoulou P; Long Q; Marshall I; Xu XY
    Ann Biomed Eng; 2003 Sep; 31(8):962-71. PubMed ID: 12918911
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Numerical simulations of flow in cerebral aneurysms: comparison of CFD results and in vivo MRI measurements.
    Rayz VL; Boussel L; Acevedo-Bolton G; Martin AJ; Young WL; Lawton MT; Higashida R; Saloner D
    J Biomech Eng; 2008 Oct; 130(5):051011. PubMed ID: 19045518
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Virtual surgical planning, flow simulation, and 3-dimensional electrospinning of patient-specific grafts to optimize Fontan hemodynamics.
    Siallagan D; Loke YH; Olivieri L; Opfermann J; Ong CS; de Zélicourt D; Petrou A; Daners MS; Kurtcuoglu V; Meboldt M; Nelson K; Vricella L; Johnson J; Hibino N; Krieger A
    J Thorac Cardiovasc Surg; 2018 Apr; 155(4):1734-1742. PubMed ID: 29361303
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Transient wall shear stress estimation in coronary bifurcations using convolutional neural networks.
    Gharleghi R; Sowmya A; Beier S
    Comput Methods Programs Biomed; 2022 Oct; 225():107013. PubMed ID: 35901629
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Super-resolution 4D flow MRI to quantify aortic regurgitation using computational fluid dynamics and deep learning.
    Long D; McMurdo C; Ferdian E; Mauger CA; Marlevi D; Nash MP; Young AA
    Int J Cardiovasc Imaging; 2023 Jun; 39(6):1189-1202. PubMed ID: 36820960
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fully automated 3D aortic segmentation of 4D flow MRI for hemodynamic analysis using deep learning.
    Berhane H; Scott M; Elbaz M; Jarvis K; McCarthy P; Carr J; Malaisrie C; Avery R; Barker AJ; Robinson JD; Rigsby CK; Markl M
    Magn Reson Med; 2020 Oct; 84(4):2204-2218. PubMed ID: 32167203
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Comparison of hemodynamics of intracranial aneurysms between MR fluid dynamics using 3D cine phase-contrast MRI and MR-based computational fluid dynamics.
    Isoda H; Ohkura Y; Kosugi T; Hirano M; Alley MT; Bammer R; Pelc NJ; Namba H; Sakahara H
    Neuroradiology; 2010 Oct; 52(10):913-20. PubMed ID: 19967532
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Accelerated Estimation of Pulmonary Artery Stenosis Pressure Gradients with Distributed Lumped Parameter Modeling vs. 3D CFD with Instantaneous Adaptive Mesh Refinement: Experimental Validation in Swine.
    Pewowaruk R; Lamers L; Roldán-Alzate A
    Ann Biomed Eng; 2021 Sep; 49(9):2365-2376. PubMed ID: 33948748
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Prediction of atherosclerotic changes in cavernous carotid aneurysms based on computational fluid dynamics analysis: a proof-of-concept study.
    Nakajima S; Sugiyama S; Oishi H; Sato K; Matsumoto Y; Niizuma K; Fujimura M; Tominaga T
    Neuroradiology; 2022 Mar; 64(3):575-585. PubMed ID: 34505180
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.