These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 38900887)

  • 1. Temperature-dependent emissions dominate aerosol and ozone formation in Los Angeles.
    Pfannerstill EY; Arata C; Zhu Q; Schulze BC; Ward R; Woods R; Harkins C; Schwantes RH; Seinfeld JH; Bucholtz A; Cohen RC; Goldstein AH
    Science; 2024 Jun; 384(6702):1324-1329. PubMed ID: 38900887
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison between Spatially Resolved Airborne Flux Measurements and Emission Inventories of Volatile Organic Compounds in Los Angeles.
    Pfannerstill EY; Arata C; Zhu Q; Schulze BC; Woods R; Harkins C; Schwantes RH; McDonald BC; Seinfeld JH; Bucholtz A; Cohen RC; Goldstein AH
    Environ Sci Technol; 2023 Oct; 57(41):15533-15545. PubMed ID: 37791848
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of Anthropogenic and Biogenic Volatile Organic Compounds on Los Angeles Air Quality.
    Gu S; Guenther A; Faiola C
    Environ Sci Technol; 2021 Sep; 55(18):12191-12201. PubMed ID: 34495669
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A better representation of VOC chemistry in WRF-Chem and its impact on ozone over Los Angeles.
    Zhu Q; Schwantes RH; Coggon M; Harkins C; Schnell J; He J; Pye HOT; Li M; Baker B; Moon Z; Ahmadov R; Pfannerstill EY; Place B; Wooldridge P; Schulze BC; Arata C; Bucholtz A; Seinfeld JH; Warneke C; Stockwell CE; Xu L; Zuraski K; Robinson MA; Neuman A; Veres PR; Peischl J; Brown SS; Goldstein AH; Cohen RC; McDonald BC
    Atmos Chem Phys; 2024 May; 24(9):5265-5286. PubMed ID: 39318851
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the sources and sinks of atmospheric VOCs: an integrated analysis of recent aircraft campaigns over North America.
    Chen X; Millet DB; Singh HB; Wisthaler A; Apel EC; Atlas EL; Blake DR; Bourgeois I; Brown SS; Crounse JD; de Gouw JA; Flocke FM; Fried A; Heikes BG; Hornbrook RS; Mikoviny T; Min KE; Müller M; Neuman JA; O'Sullivan DW; Peischl J; Pfister GG; Richter D; Roberts JM; Ryerson TB; Shertz SR; Thompson CR; Treadaway V; Veres PR; Walega J; Warneke C; Washenfelder RA; Weibring P; Yuan B
    Atmos Chem Phys; 2019 Jul; 19(14):9097-9123. PubMed ID: 33688334
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling an air pollution episode in northwestern United States: identifying the effect of nitrogen oxide and volatile organic compound emission changes on air pollutants formation using direct sensitivity analysis.
    Tsimpidi AP; Trail M; Hu Y; Nenes A; Russell AG
    J Air Waste Manag Assoc; 2012 Oct; 62(10):1150-65. PubMed ID: 23155861
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Volatile chemical product emissions enhance ozone and modulate urban chemistry.
    Coggon MM; Gkatzelis GI; McDonald BC; Gilman JB; Schwantes RH; Abuhassan N; Aikin KC; Arend MF; Berkoff TA; Brown SS; Campos TL; Dickerson RR; Gronoff G; Hurley JF; Isaacman-VanWertz G; Koss AR; Li M; McKeen SA; Moshary F; Peischl J; Pospisilova V; Ren X; Wilson A; Wu Y; Trainer M; Warneke C
    Proc Natl Acad Sci U S A; 2021 Aug; 118(32):. PubMed ID: 34341119
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Observations Confirm that Volatile Chemical Products Are a Major Source of Petrochemical Emissions in U.S. Cities.
    Gkatzelis GI; Coggon MM; McDonald BC; Peischl J; Gilman JB; Aikin KC; Robinson MA; Canonaco F; Prevot ASH; Trainer M; Warneke C
    Environ Sci Technol; 2021 Apr; 55(8):4332-4343. PubMed ID: 33720711
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimization of a volatile organic compound control strategy in an oil industry center in Canada by evaluating ozone and secondary organic aerosol formation potential.
    Xiong Y; Zhou J; Xing Z; Du K
    Environ Res; 2020 Dec; 191():110217. PubMed ID: 32971083
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Changes in air quality and tropospheric composition due to depletion of stratospheric ozone and interactions with climate.
    Tang X; Wilson SR; Solomon KR; Shao M; Madronich S
    Photochem Photobiol Sci; 2011 Feb; 10(2):280-91. PubMed ID: 21253665
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unveiling the dipole synergic effect of biogenic and anthropogenic emissions on ozone concentrations.
    Gao Y; Yan F; Ma M; Ding A; Liao H; Wang S; Wang X; Zhao B; Cai W; Su H; Yao X; Gao H
    Sci Total Environ; 2022 Apr; 818():151722. PubMed ID: 34813804
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estimation of biogenic volatile organic compounds emissions in subtropical island--Taiwan.
    Chang KH; Chen TF; Huang HC
    Sci Total Environ; 2005 Jun; 346(1-3):184-99. PubMed ID: 15993693
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Role of Temperature and NO
    Nussbaumer CM; Cohen RC
    Environ Sci Technol; 2020 Dec; 54(24):15652-15659. PubMed ID: 33274926
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Ozone Formation and Key VOCs of a Continuous Summertime O
    Sun XY; Zhao M; Shen HQ; Liu Y; Du MY; Zhang WJ; Xu HY; Fan GL; Gong HL; Li QS; Li DQ; Gao XM; Zhang LN
    Huan Jing Ke Xue; 2022 Feb; 43(2):686-695. PubMed ID: 35075842
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Emission characteristics and reactivity of volatile organic compounds from typical high-energy-consuming industries in North China.
    Wang R; Wang X; Cheng S; Wang K; Cheng L; Zhu J; Zheng H; Duan W
    Sci Total Environ; 2022 Feb; 809():151134. PubMed ID: 34695460
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The research hotspots and trends of volatile organic compound emissions from anthropogenic and natural sources: A systematic quantitative review.
    Duan C; Liao H; Wang K; Ren Y
    Environ Res; 2023 Jan; 216(Pt 1):114386. PubMed ID: 36162470
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluating the effects of climate change on summertime ozone using a relative response factor approach for policymakers.
    Avise J; Abraham RG; Chung SH; Chen J; Lamb B; Salathé EP; Zhang Y; Nolte CG; Loughlin DH; Guenther A; Wiedinmyer C; Duhl T
    J Air Waste Manag Assoc; 2012 Sep; 62(9):1061-74. PubMed ID: 23019820
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Emissions of volatile organic compounds (VOCs) from cooking and their speciation: A case study for Shanghai with implications for China.
    Wang H; Xiang Z; Wang L; Jing S; Lou S; Tao S; Liu J; Yu M; Li L; Lin L; Chen Y; Wiedensohler A; Chen C
    Sci Total Environ; 2018 Apr; 621():1300-1309. PubMed ID: 29054635
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Speciated OVOC and VOC emission inventories and their implications for reactivity-based ozone control strategy in the Pearl River Delta region, China.
    Ou J; Zheng J; Li R; Huang X; Zhong Z; Zhong L; Lin H
    Sci Total Environ; 2015 Oct; 530-531():393-402. PubMed ID: 26057544
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impacts of biogenic emissions of VOC and NOx on tropospheric ozone during summertime in eastern China.
    Wang Q; Han Z; Wang T; Zhang R
    Sci Total Environ; 2008 May; 395(1):41-9. PubMed ID: 18329698
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.