These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
108 related articles for article (PubMed ID: 38900898)
21. Source appointment of fine particle number and volume concentration during severe haze pollution in Beijing in January 2013. Liu Z; Wang Y; Hu B; Ji D; Zhang J; Wu F; Wan X; Wang Y Environ Sci Pollut Res Int; 2016 Apr; 23(7):6845-60. PubMed ID: 26667647 [TBL] [Abstract][Full Text] [Related]
22. Does urban sprawl exacerbate urban haze pollution? Yang Y; Yan D Environ Sci Pollut Res Int; 2021 Oct; 28(40):56522-56534. PubMed ID: 34057631 [TBL] [Abstract][Full Text] [Related]
23. Spatial Association Effect of Haze Pollution in Cheng-Yu Urban Agglomeration. Zhang D; Lu Y; Tian Y Sci Rep; 2020 Jun; 10(1):9753. PubMed ID: 32546744 [TBL] [Abstract][Full Text] [Related]
24. [Effect of Atmospheric Haze Based on Multi-source Remote Sensing Data Considering the Size Effect of Landscape Sources and Sinks]. Xu K; Yu TT; Sun JJ; Yuan ZX; Qin K Huan Jing Ke Xue; 2017 Dec; 38(12):4905-4912. PubMed ID: 29964547 [TBL] [Abstract][Full Text] [Related]
25. Natural Silicon Isotopic Signatures Reveal the Sources of Airborne Fine Particulate Matter. Lu D; Liu Q; Yu M; Yang X; Fu Q; Zhang X; Mu Y; Jiang G Environ Sci Technol; 2018 Feb; 52(3):1088-1095. PubMed ID: 29284089 [TBL] [Abstract][Full Text] [Related]
26. Has ridesourcing reduced haze? An analysis using the Didi app. Wang X; Wang S; Wang L; Fan F Environ Sci Pollut Res Int; 2021 Sep; 28(33):45571-45585. PubMed ID: 33876364 [TBL] [Abstract][Full Text] [Related]
27. The influence of urban haze pollution on urban shrinkage in China-an analysis of the mediating effect of the labor supply. Liu X Environ Sci Pollut Res Int; 2021 Nov; 28(44):63297-63304. PubMed ID: 34227000 [TBL] [Abstract][Full Text] [Related]
28. Manufacturing agglomeration, urban form, and haze pollution. Wei J; Ye Y; Yu H Environ Sci Pollut Res Int; 2023 Feb; 30(7):18921-18936. PubMed ID: 36217053 [TBL] [Abstract][Full Text] [Related]
29. Insights into the characteristics and sources of primary and secondary organic carbon: High time resolution observation in urban Shanghai. Xu J; Wang Q; Deng C; McNeill VF; Fankhauser A; Wang F; Zheng X; Shen J; Huang K; Zhuang G Environ Pollut; 2018 Feb; 233():1177-1187. PubMed ID: 29037494 [TBL] [Abstract][Full Text] [Related]
30. Pollution characteristics and potential health effects of airborne microplastics and culturable microorganisms during urban haze in Harbin, China. Jiang J; Ren H; Wang X; Liu B Bioresour Technol; 2024 Feb; 393():130132. PubMed ID: 38040302 [TBL] [Abstract][Full Text] [Related]
31. A comparison study on airborne particles during haze days and non-haze days in Beijing. Sun Z; Mu Y; Liu Y; Shao L Sci Total Environ; 2013 Jul; 456-457():1-8. PubMed ID: 23583755 [TBL] [Abstract][Full Text] [Related]
32. High time-resolved characterization of airborne microbial community during a typical haze pollution process. Xie Z; Du S; Ma T; Hou J; Zeng X; Li Y J Hazard Mater; 2021 Aug; 415():125722. PubMed ID: 34088212 [TBL] [Abstract][Full Text] [Related]
33. Haze pollution and urban sprawl: An empirical analysis based on panel simultaneous equation model. Huo L PLoS One; 2024; 19(2):e0296814. PubMed ID: 38421968 [TBL] [Abstract][Full Text] [Related]
34. Does technology innovation reduce haze pollution? An empirical study based on urban innovation index in China. He L; Yuan E; Yang K; Tao D Environ Sci Pollut Res Int; 2022 Apr; 29(16):24063-24076. PubMed ID: 34822086 [TBL] [Abstract][Full Text] [Related]
35. The pain of breathing: how does haze pollution affect urban innovation? Feng W; Yuan H Environ Sci Pollut Res Int; 2022 Jun; 29(28):42664-42677. PubMed ID: 35088266 [TBL] [Abstract][Full Text] [Related]
36. Particle size distribution and respiratory deposition estimates of airborne perfluoroalkyl acids during the haze period in the megacity of Shanghai. Guo M; Lyu Y; Xu T; Yao B; Song W; Li M; Yang X; Cheng T; Li X Environ Pollut; 2018 Mar; 234():9-19. PubMed ID: 29154207 [TBL] [Abstract][Full Text] [Related]
37. Distribution of bacterial concentration and viability in atmospheric aerosols under various weather conditions in the coastal region of China. Yin Y; Qi J; Gong J; Gao D Sci Total Environ; 2021 Nov; 795():148713. PubMed ID: 34247090 [TBL] [Abstract][Full Text] [Related]
38. Comparison of chemical composition and airborne bacterial community structure in PM Zhong S; Zhang L; Jiang X; Gao P Sci Total Environ; 2019 Mar; 655():202-210. PubMed ID: 30471588 [TBL] [Abstract][Full Text] [Related]
39. Submicron aerosol pollution in Greater Cairo (Egypt): A new type of urban haze? Christodoulou A; Bezantakos S; Bourtsoukidis E; Stavroulas I; Pikridas M; Oikonomou K; Iakovides M; Hassan SK; Boraiy M; El-Nazer M; Wheida A; Abdelwahab M; Sarda-Estève R; Rigler M; Biskos G; Afif C; Borbon A; Vrekoussis M; Mihalopoulos N; Sauvage S; Sciare J Environ Int; 2024 Apr; 186():108610. PubMed ID: 38626495 [TBL] [Abstract][Full Text] [Related]
40. Can urban rail transit reduce haze pollution? A spatial difference-in-differences approach. Lin Y; Li M; Lin R Environ Sci Pollut Res Int; 2022 Nov; 29(54):81430-81440. PubMed ID: 35732892 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]