These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 38901090)

  • 1. Meta-learning based blind image super-resolution approach to different degradations.
    Yang Z; Xia J; Li S; Liu W; Zhi S; Zhang S; Liu L; Fu Y; Gündüz D
    Neural Netw; 2024 Oct; 178():106429. PubMed ID: 38901090
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Blind Super-Resolution via Meta-Learning and Markov Chain Monte Carlo Simulation.
    Xia J; Yang Z; Li S; Zhang S; Fu Y; Gunduz D; Li X
    IEEE Trans Pattern Anal Mach Intell; 2024 Dec; 46(12):8139-8156. PubMed ID: 38758618
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PILN: A posterior information learning network for blind reconstruction of lung CT images.
    Chi J; Sun Z; Han X; Yu X; Wang H; Wu C
    Comput Methods Programs Biomed; 2023 Apr; 232():107449. PubMed ID: 36871547
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An Arbitrary Scale Super-Resolution Approach for 3D MR Images via Implicit Neural Representation.
    Wu Q; Li Y; Sun Y; Zhou Y; Wei H; Yu J; Zhang Y
    IEEE J Biomed Health Inform; 2023 Feb; 27(2):1004-1015. PubMed ID: 37022393
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MRI super-resolution via realistic downsampling with adversarial learning.
    Huang B; Xiao H; Liu W; Zhang Y; Wu H; Wang W; Yang Y; Yang Y; Miller GW; Li T; Cai J
    Phys Med Biol; 2021 Oct; 66(20):. PubMed ID: 34474407
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Non-local degradation modeling for spatially adaptive single image super-resolution.
    Zhang Q; Zheng B; Li Z; Liu Y; Zhu Z; Slabaugh G; Yuan S
    Neural Netw; 2024 Jul; 175():106293. PubMed ID: 38626619
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conditional Hyper-Network for Blind Super-Resolution With Multiple Degradations.
    Yin G; Wang W; Yuan Z; Ji W; Yu D; Sun S; Chua TS; Wang C
    IEEE Trans Image Process; 2022; 31():3949-3960. PubMed ID: 35635814
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Meta-Learning-Based Degradation Representation for Blind Super-Resolution.
    Xia B; Tian Y; Zhang Y; Hang Y; Yang W; Liao Q
    IEEE Trans Image Process; 2023; 32():3383-3396. PubMed ID: 37307185
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MRI super-resolution reconstruction for MRI-guided adaptive radiotherapy using cascaded deep learning: In the presence of limited training data and unknown translation model.
    Chun J; Zhang H; Gach HM; Olberg S; Mazur T; Green O; Kim T; Kim H; Kim JS; Mutic S; Park JC
    Med Phys; 2019 Sep; 46(9):4148-4164. PubMed ID: 31309585
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Learning low-dose CT degradation from unpaired data with flow-based model.
    Liu X; Liang X; Deng L; Tan S; Xie Y
    Med Phys; 2022 Dec; 49(12):7516-7530. PubMed ID: 35880375
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Features Guided Face Super-Resolution via Hybrid Model of Deep Learning and Random Forests.
    Liu ZS; Siu WC; Chan YL
    IEEE Trans Image Process; 2021; 30():4157-4170. PubMed ID: 33819156
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Image super-resolution with an enhanced group convolutional neural network.
    Tian C; Yuan Y; Zhang S; Lin CW; Zuo W; Zhang D
    Neural Netw; 2022 Sep; 153():373-385. PubMed ID: 35779445
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deep self-supervised spatial-variant image deblurring.
    Li Y; Jiang B; Shi Z; Chen X; Pan J
    Neural Netw; 2024 Nov; 179():106591. PubMed ID: 39111162
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep local-to-global feature learning for medical image super-resolution.
    Huang W; Liao X; Chen H; Hu Y; Jia W; Wang Q
    Comput Med Imaging Graph; 2024 Jul; 115():102374. PubMed ID: 38565036
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deep Unsupervised Fusion Learning for Hyperspectral Image Super Resolution.
    Liu Z; Zheng Y; Han XH
    Sensors (Basel); 2021 Mar; 21(7):. PubMed ID: 33800532
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deconvolutional neural network for image super-resolution.
    Cao F; Yao K; Liang J
    Neural Netw; 2020 Dec; 132():394-404. PubMed ID: 33010715
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deep learning in computed tomography super resolution using multi-modality data training.
    Fok WYR; Fieselmann A; Herbst M; Ritschl L; Kappler S; Saalfeld S
    Med Phys; 2024 Apr; 51(4):2846-2860. PubMed ID: 37972365
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unified blind method for multi-image super-resolution and single/multi-image blur deconvolution.
    Faramarzi E; Rajan D; Christensen MP
    IEEE Trans Image Process; 2013 Jun; 22(6):2101-14. PubMed ID: 23314775
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bayesian Image Super-Resolution With Deep Modeling of Image Statistics.
    Gao S; Zhuang X
    IEEE Trans Pattern Anal Mach Intell; 2023 Feb; 45(2):1405-1423. PubMed ID: 35349433
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single Image Super-Resolution Quality Assessment: A Real-World Dataset, Subjective Studies, and an Objective Metric.
    Jiang Q; Liu Z; Gu K; Shao F; Zhang X; Liu H; Lin W
    IEEE Trans Image Process; 2022; 31():2279-2294. PubMed ID: 35239481
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.