These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 38901321)
1. Characterization of the redox-active extracellular polymeric substances in an anaerobic methanotrophic consortium. Zhang X; Zhao J; Erler DV; Rabiee H; Kong Z; Wang S; Wang Z; Virdis B; Yuan Z; Hu S J Environ Manage; 2024 Aug; 365():121523. PubMed ID: 38901321 [TBL] [Abstract][Full Text] [Related]
2. Polyhydroxyalkanoate-driven current generation via acetate by an anaerobic methanotrophic consortium. Zhang X; McIlroy SJ; Vassilev I; Rabiee H; Plan M; Cai C; Virdis B; Tyson GW; Yuan Z; Hu S Water Res; 2022 Aug; 221():118743. PubMed ID: 35724480 [TBL] [Abstract][Full Text] [Related]
3. Enrichment of anaerobic nitrate-dependent methanotrophic 'Candidatus Methanoperedens nitroreducens' archaea from an Italian paddy field soil. Vaksmaa A; Guerrero-Cruz S; van Alen TA; Cremers G; Ettwig KF; Lüke C; Jetten MSM Appl Microbiol Biotechnol; 2017 Sep; 101(18):7075-7084. PubMed ID: 28779290 [TBL] [Abstract][Full Text] [Related]
4. Anaerobic oxidation of methane: an "active" microbial process. Cui M; Ma A; Qi H; Zhuang X; Zhuang G Microbiologyopen; 2015 Feb; 4(1):1-11. PubMed ID: 25530008 [TBL] [Abstract][Full Text] [Related]
5. Multi-heme cytochrome-mediated extracellular electron transfer by the anaerobic methanotroph 'Candidatus Methanoperedens nitroreducens'. Zhang X; Joyce GH; Leu AO; Zhao J; Rabiee H; Virdis B; Tyson GW; Yuan Z; McIlroy SJ; Hu S Nat Commun; 2023 Sep; 14(1):6118. PubMed ID: 37777538 [TBL] [Abstract][Full Text] [Related]
6. Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage. Haroon MF; Hu S; Shi Y; Imelfort M; Keller J; Hugenholtz P; Yuan Z; Tyson GW Nature; 2013 Aug; 500(7464):567-70. PubMed ID: 23892779 [TBL] [Abstract][Full Text] [Related]
7. Humic substances as electron acceptor for anaerobic oxidation of methane (AOM) and electron shuttle in Mn (IV)-dependent AOM. Xie M; Zhang X; Li S; Maulani N; Cai F; Zheng Y; Cai C; Virdis B; Yuan Z; Hu S Sci Total Environ; 2024 Feb; 912():169576. PubMed ID: 38145665 [TBL] [Abstract][Full Text] [Related]
8. Community Structure and Microbial Associations in Sediment-Free Methanotrophic Enrichment Cultures from a Marine Methane Seep. Yu H; Speth DR; Connon SA; Goudeau D; Malmstrom RR; Woyke T; Orphan VJ Appl Environ Microbiol; 2022 Jun; 88(11):e0210921. PubMed ID: 35604226 [TBL] [Abstract][Full Text] [Related]
9. Spatial-Temporal Pattern of Sulfate-Dependent Anaerobic Methane Oxidation in an Intertidal Zone of the East China Sea. Wang J; Hua M; Cai C; Hu J; Wang J; Yang H; Ma F; Qian H; Zheng P; Hu B Appl Environ Microbiol; 2019 Apr; 85(7):. PubMed ID: 30709818 [TBL] [Abstract][Full Text] [Related]
10. Anaerobic methanotroph 'Candidatus Methanoperedens nitroreducens' has a pleomorphic life cycle. McIlroy SJ; Leu AO; Zhang X; Newell R; Woodcroft BJ; Yuan Z; Hu S; Tyson GW Nat Microbiol; 2023 Feb; 8(2):321-331. PubMed ID: 36635574 [TBL] [Abstract][Full Text] [Related]
11. Community Composition and Ultrastructure of a Nitrate-Dependent Anaerobic Methane-Oxidizing Enrichment Culture. Gambelli L; Guerrero-Cruz S; Mesman RJ; Cremers G; Jetten MSM; Op den Camp HJM; Kartal B; Lueke C; van Niftrik L Appl Environ Microbiol; 2018 Feb; 84(3):. PubMed ID: 29150508 [TBL] [Abstract][Full Text] [Related]
12. Methane-Fueled Syntrophy through Extracellular Electron Transfer: Uncovering the Genomic Traits Conserved within Diverse Bacterial Partners of Anaerobic Methanotrophic Archaea. Skennerton CT; Chourey K; Iyer R; Hettich RL; Tyson GW; Orphan VJ mBio; 2017 Aug; 8(4):. PubMed ID: 28765215 [TBL] [Abstract][Full Text] [Related]
13. Response of the Anaerobic Methanotrophic Archaeon Cai C; Ni G; Xia J; Zhang X; Zheng Y; He B; Marcellin E; Li W; Pu J; Yuan Z; Hu S Front Microbiol; 2022; 13():799859. PubMed ID: 35509320 [TBL] [Abstract][Full Text] [Related]
14. Intercellular wiring enables electron transfer between methanotrophic archaea and bacteria. Wegener G; Krukenberg V; Riedel D; Tegetmeyer HE; Boetius A Nature; 2015 Oct; 526(7574):587-90. PubMed ID: 26490622 [TBL] [Abstract][Full Text] [Related]
15. Anaerobic methanotrophic archaea of the ANME-2d clade feature lipid composition that differs from other ANME archaea. Kurth JM; Smit NT; Berger S; Schouten S; Jetten MSM; Welte CU FEMS Microbiol Ecol; 2019 Jul; 95(7):. PubMed ID: 31150548 [TBL] [Abstract][Full Text] [Related]
16. Salinity effect on an anaerobic methane- and ammonium-oxidising consortium: Shifts in activity, morphology, osmoregulation and syntrophic relationship. Frank J; Zhang X; Marcellin E; Yuan Z; Hu S Water Res; 2023 Aug; 242():120090. PubMed ID: 37331229 [TBL] [Abstract][Full Text] [Related]
17. Metabolic potential of anaerobic methane oxidizing archaea for a broad spectrum of electron acceptors. Glodowska M; Welte CU; Kurth JM Adv Microb Physiol; 2022; 80():157-201. PubMed ID: 35489791 [TBL] [Abstract][Full Text] [Related]
18. Mechanisms of extracellular electron transfer in anaerobic methanotrophic archaea. Ouboter HT; Mesman R; Sleutels T; Postma J; Wissink M; Jetten MSM; Ter Heijne A; Berben T; Welte CU Nat Commun; 2024 Feb; 15(1):1477. PubMed ID: 38368447 [TBL] [Abstract][Full Text] [Related]
19. Bidirectional extracellular electron transfer pathways of Geobacter sulfurreducens biofilms: Molecular insights into extracellular polymeric substances. Yang G; Xia X; Nie W; Qin B; Hou T; Lin A; Yao S; Zhuang L Environ Res; 2024 Mar; 245():118038. PubMed ID: 38147916 [TBL] [Abstract][Full Text] [Related]
20. Environmental regulation of the anaerobic oxidation of methane: a comparison of ANME-I and ANME-II communities. Nauhaus K; Treude T; Boetius A; Krüger M Environ Microbiol; 2005 Jan; 7(1):98-106. PubMed ID: 15643940 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]