These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 38901363)

  • 1. Suppression of coffee rings by controllable nanoparticle enrichment through superhydrophobicity-enabled dynamic evaporation.
    Han Y; Fan G; Han Y; Huang X; Wang W; Luo X; Zhang Y; Han L
    J Colloid Interface Sci; 2024 Nov; 673():735-745. PubMed ID: 38901363
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Controllable Nanoparticle Aggregation through a Superhydrophobic Laser-Induced Graphene Dynamic System for Surface-Enhanced Raman Scattering Detection.
    Han Y; Han Y; Sun J; Liu H; Luo X; Zhang Y; Han L
    ACS Appl Mater Interfaces; 2022 Jan; 14(2):3504-3514. PubMed ID: 34985257
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaporating droplets on oil-wetted surfaces: Suppression of the coffee-stain effect.
    Li Y; Diddens C; Segers T; Wijshoff H; Versluis M; Lohse D
    Proc Natl Acad Sci U S A; 2020 Jul; 117(29):16756-16763. PubMed ID: 32616571
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling and Experiments of Droplet Evaporation with Micro or Nano Particles in Coffee Ring or Coffee Splat.
    Xiong H; Wang Q; Yuan L; Liang J; Lin J
    Nanomaterials (Basel); 2023 May; 13(10):. PubMed ID: 37242028
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rational design of wettability-patterned microchips for high-performance attomolar surface-enhanced Raman detection.
    Shi XS; Zhao YF; Zhang HY; Xu XF
    Talanta; 2023 Jun; 258():124417. PubMed ID: 36931060
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic Roughness Ratio-Based Framework for Modeling Mixed Mode of Droplet Evaporation.
    Gunjan MR; Raj R
    Langmuir; 2017 Jul; 33(28):7191-7201. PubMed ID: 28640618
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Suppression of coffee-ring effect via periodic oscillation of substrate for ultra-sensitive enrichment towards surface-enhanced Raman scattering.
    Ji B; Zhang L; Li M; Wang S; Law MK; Huang Y; Wen W; Zhou B
    Nanoscale; 2019 Nov; 11(43):20534-20545. PubMed ID: 31498365
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Joint Experimental and Theoretical Study on Deposition Morphologies in Polymer Sessile Droplets.
    Song T; Jiang Z; Man X; Shi W
    Langmuir; 2024 Jan; 40(1):860-870. PubMed ID: 38109327
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Formation of coffee-stain patterns at the nanoscale: The role of nanoparticle solubility and solvent evaporation rate.
    Zhang J; Milzetti J; Leroy F; Müller-Plathe F
    J Chem Phys; 2017 Mar; 146(11):114503. PubMed ID: 28330371
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaporation of sessile drops containing colloidal rods: coffee-ring and order-disorder transition.
    Dugyala VR; Basavaraj MG
    J Phys Chem B; 2015 Mar; 119(9):3860-7. PubMed ID: 25521279
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Micrometer-sized water droplet impingement dynamics and evaporation on a flat dry surface.
    Briones AM; Ervin JS; Putnam SA; Byrd LW; Gschwender L
    Langmuir; 2010 Aug; 26(16):13272-86. PubMed ID: 20695569
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaporation of sessile droplets affected by graphite nanoparticles and binary base fluids.
    Zhong X; Duan F
    J Phys Chem B; 2014 Nov; 118(47):13636-45. PubMed ID: 25372453
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A simple approach for coffee-ring suppression yielding homogeneous drying patterns of ZnO and TiO
    Marica I; Stefan M; Boca S; Falamaş A; Farcău C
    J Colloid Interface Sci; 2023 Apr; 635():117-127. PubMed ID: 36580694
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An Experimental Investigation of Evaporation of Ethanol-Water Droplets Laden with Alumina Nanoparticles on a Critically Inclined Heated Substrate.
    Katre P; Balusamy S; Banerjee S; Sahu KC
    Langmuir; 2022 Apr; 38(15):4722-4735. PubMed ID: 35377666
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tunable coffee-ring formation of halloysite nanotubes by evaporating sessile drops.
    Liu H; Wang Y; Luo Y; Guo M; Feng Y; Liu M
    Soft Matter; 2021 Oct; 17(41):9514-9527. PubMed ID: 34617549
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaporation and drying characteristics of the sessile ferrofluid droplet under a horizontal magnetic field.
    Liu Z; Zhou J; Li Y; Zhuo X; Shi X; Jing D
    Fundam Res; 2022 Mar; 2(2):222-229. PubMed ID: 38933170
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanoparticle deposition pattern during colloidal droplet evaporation as in-situ investigated by Low-Field NMR: The critical role of bound water.
    Mansoor B; Chen W
    J Colloid Interface Sci; 2022 May; 613():709-719. PubMed ID: 35066230
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Implications of the Coffee-Ring Effect on Virus Infectivity.
    Huang Q; Wang W; Vikesland PJ
    Langmuir; 2021 Sep; 37(38):11260-11268. PubMed ID: 34525305
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DC field coupled evaporation of a sessile gold nanofluid droplet.
    Zaibudeen AW; Bandyopadhyay R
    Soft Matter; 2021 Nov; 17(45):10294-10300. PubMed ID: 34782898
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effective Enrichment of Plasmonic Hotspots for SERS by Spinning Droplets on a Slippery Concave Dome Array.
    Wu J; Cai J; Fan Y; Zhang Y; Fang H; Yan S
    Biosensors (Basel); 2022 Apr; 12(5):. PubMed ID: 35624571
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.