These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 38901662)

  • 1. Computational analysis of the simultaneous application of ultrasound and electric fields in a lipid bilayer.
    Müller WA; Sarkis JR; Marczak LDF; Muniz AR
    Biochim Biophys Acta Biomembr; 2024 Oct; 1866(7):184364. PubMed ID: 38901662
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synergistic effect of electric field and lipid oxidation on the permeability of cell membranes.
    Yusupov M; Van der Paal J; Neyts EC; Bogaerts A
    Biochim Biophys Acta Gen Subj; 2017 Apr; 1861(4):839-847. PubMed ID: 28137619
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interface water dynamics and porating electric fields for phospholipid bilayers.
    Ziegler MJ; Vernier PT
    J Phys Chem B; 2008 Oct; 112(43):13588-96. PubMed ID: 18837540
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Translocation thermodynamics of linear and cyclic nonaarginine into model DPPC bilayer via coarse-grained molecular dynamics simulation: implications of pore formation and nonadditivity.
    Hu Y; Liu X; Sinha SK; Patel S
    J Phys Chem B; 2014 Mar; 118(10):2670-82. PubMed ID: 24506488
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of membrane permeability due to synergistic effect of controlled shock wave and electric field application.
    Hossain S; Abdelgawad A
    Electromagn Biol Med; 2020; 39(1):20-29. PubMed ID: 31868023
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular dynamics insights on temperature and pressure effects on electroporation.
    Müller WA; Sarkis JR; Marczak LDF; Muniz AR
    Biochim Biophys Acta Biomembr; 2022 Dec; 1864(12):184049. PubMed ID: 36113558
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the electroporation thresholds of lipid bilayers: molecular dynamics simulation investigations.
    Polak A; Bonhenry D; Dehez F; Kramar P; Miklavčič D; Tarek M
    J Membr Biol; 2013 Nov; 246(11):843-50. PubMed ID: 23780415
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electroporation of Skin Stratum Corneum Lipid Bilayer and Molecular Mechanism of Drug Transport: A Molecular Dynamics Study.
    Gupta R; Rai B
    Langmuir; 2018 May; 34(20):5860-5870. PubMed ID: 29708340
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular dynamics simulation of reversible electroporation with Martini force field.
    Zhou C; Liu K
    Biomed Eng Online; 2019 Dec; 18(1):123. PubMed ID: 31878975
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A model of lipid rearrangements during pore formation in the DPPC lipid bilayer.
    Wrona A; Kubica K
    J Liposome Res; 2018 Sep; 28(3):218-225. PubMed ID: 28641466
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The importance of membrane defects-lessons from simulations.
    Bennett WF; Tieleman DP
    Acc Chem Res; 2014 Aug; 47(8):2244-51. PubMed ID: 24892900
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electric-driven membrane poration: A rationale for water role in the kinetics of pore formation.
    Marracino P; Caramazza L; Montagna M; Ghahri R; D'Abramo M; Liberti M; Apollonio F
    Bioelectrochemistry; 2022 Feb; 143():107987. PubMed ID: 34794113
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Membrane electroporation: a molecular dynamics simulation.
    Tarek M
    Biophys J; 2005 Jun; 88(6):4045-53. PubMed ID: 15764667
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electric field-driven water dipoles: nanoscale architecture of electroporation.
    Tokman M; Lee JH; Levine ZA; Ho MC; Colvin ME; Vernier PT
    PLoS One; 2013; 8(4):e61111. PubMed ID: 23593404
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular dynamics simulations of hydrophilic pores in lipid bilayers.
    Leontiadou H; Mark AE; Marrink SJ
    Biophys J; 2004 Apr; 86(4):2156-64. PubMed ID: 15041656
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electropore Formation in Mechanically Constrained Phospholipid Bilayers.
    Fernández ML; Risk MR; Vernier PT
    J Membr Biol; 2018 Apr; 251(2):237-245. PubMed ID: 29170842
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pulsed Electric Fields Can Create Pores in the Voltage Sensors of Voltage-Gated Ion Channels.
    Rems L; Kasimova MA; Testa I; Delemotte L
    Biophys J; 2020 Jul; 119(1):190-205. PubMed ID: 32559411
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular-level characterization of lipid membrane electroporation using linearly rising current.
    Kramar P; Delemotte L; Maček Lebar A; Kotulska M; Tarek M; Miklavčič D
    J Membr Biol; 2012 Oct; 245(10):651-9. PubMed ID: 22886207
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The molecular basis of electroporation.
    Tieleman DP
    BMC Biochem; 2004 Jul; 5():10. PubMed ID: 15260890
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular dynamics simulations of Oxprenolol and Propranolol in a DPPC lipid bilayer.
    Azizi K; Koli MG
    J Mol Graph Model; 2016 Mar; 64():153-164. PubMed ID: 26851866
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.