These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 38901705)
1. Synthesis strategies, regeneration, cost analysis, challenges and future prospects of bacterial cellulose-based aerogels for water treatment: A review. Nguyen NTT; Nguyen LM; Nguyen TTT; Nguyen DTC; Tran TV Chemosphere; 2024 Aug; 362():142654. PubMed ID: 38901705 [TBL] [Abstract][Full Text] [Related]
2. Preparation and Characterization of Cellulose Grafted with Epoxidized Soybean Oil Aerogels for Oil-Absorbing Materials. Xu X; Dong F; Yang X; Liu H; Guo L; Qian Y; Wang A; Wang S; Luo J J Agric Food Chem; 2019 Jan; 67(2):637-643. PubMed ID: 30601645 [TBL] [Abstract][Full Text] [Related]
3. Surface modification of bacterial cellulose aerogels' web-like skeleton for oil/water separation. Sai H; Fu R; Xing L; Xiang J; Li Z; Li F; Zhang T ACS Appl Mater Interfaces; 2015 Apr; 7(13):7373-81. PubMed ID: 25799389 [TBL] [Abstract][Full Text] [Related]
4. Preparation and adsorption properties of magnetic hydrophobic cellulose aerogels based on refined fibers. He X; Chen T; Jiang T; Wang C; Luan Y; Liu P; Liu Z Carbohydr Polym; 2021 May; 260():117790. PubMed ID: 33712138 [TBL] [Abstract][Full Text] [Related]
5. Microorganisms immobilized hydroxyethyl cellulose/luffa composite sponge for selective adsorption and biodegradation of oils in wastewater. Chen L; Lu H; Jiang X; Qu N; Hasi Q; Zhang Y; Zhang B; Jiang S Int J Biol Macromol; 2024 Oct; 277(Pt 1):133477. PubMed ID: 38942413 [TBL] [Abstract][Full Text] [Related]
6. Construction of aerogels based on nanocrystalline cellulose and chitosan for high efficient oil/water separation and water disinfection. Zhang Y; Yin M; Li L; Fan B; Liu Y; Li R; Ren X; Huang TS; Kim IS Carbohydr Polym; 2020 Sep; 243():116461. PubMed ID: 32532394 [TBL] [Abstract][Full Text] [Related]
7. Preparation of antifouling and highly hydrophobic cellulose nanofibers/alginate aerogels by bidirectional freeze-drying for water-oil separation in the ocean environment. Liu Q; Liu Y; Feng Q; Chen C; Xu Z J Hazard Mater; 2023 Jan; 441():129965. PubMed ID: 36122524 [TBL] [Abstract][Full Text] [Related]
8. Fluorine-Free Oil Absorbents Made from Cellulose Nanofibril Aerogels. Mulyadi A; Zhang Z; Deng Y ACS Appl Mater Interfaces; 2016 Feb; 8(4):2732-40. PubMed ID: 26761377 [TBL] [Abstract][Full Text] [Related]
9. Graphene oxide/cellulose aerogels nanocomposite: Preparation, pyrolysis, and application for electromagnetic interference shielding. Wan C; Li J Carbohydr Polym; 2016 Oct; 150():172-9. PubMed ID: 27312627 [TBL] [Abstract][Full Text] [Related]
10. Ultralight, hydrophobic, sustainable, cost-effective and floating kapok/microfibrillated cellulose aerogels as speedy and recyclable oil superabsorbents. Zhang H; Wang J; Xu G; Xu Y; Wang F; Shen H J Hazard Mater; 2021 Mar; 406():124758. PubMed ID: 33321313 [TBL] [Abstract][Full Text] [Related]
11. Superelastic and superhydrophobic bacterial cellulose/silica aerogels with hierarchical cellular structure for oil absorption and recovery. He J; Zhao H; Li X; Su D; Zhang F; Ji H; Liu R J Hazard Mater; 2018 Mar; 346():199-207. PubMed ID: 29275109 [TBL] [Abstract][Full Text] [Related]
12. Post-modification of Cellulose Nanocrystal Aerogels with Thiol-Ene Click Chemistry. Aalbers GJW; Boott CE; D'Acierno F; Lewis L; Ho J; Michal CA; Hamad WY; MacLachlan MJ Biomacromolecules; 2019 Jul; 20(7):2779-2785. PubMed ID: 31244013 [TBL] [Abstract][Full Text] [Related]
13. Review on recent advances in cellulose nanofibril based hybrid aerogels: Synthesis, properties and their applications. Prasad C; Jeong SG; Won JS; Ramanjaneyulu S; Sangaraju S; Kerru N; Choi HY Int J Biol Macromol; 2024 Mar; 261(Pt 1):129460. PubMed ID: 38237829 [TBL] [Abstract][Full Text] [Related]
14. Contact-active antibacterial aerogels from cellulose nanofibrils. Henschen J; Illergård J; Larsson PA; Ek M; Wågberg L Colloids Surf B Biointerfaces; 2016 Oct; 146():415-22. PubMed ID: 27391038 [TBL] [Abstract][Full Text] [Related]
15. Resource recovery of Eichhornia crassipes as oil superabsorbent. Yin T; Zhang X; Liu X; Wang C Mar Pollut Bull; 2017 May; 118(1-2):267-274. PubMed ID: 28279504 [TBL] [Abstract][Full Text] [Related]
17. Cellulose Aerogels: Synthesis, Applications, and Prospects. Long LY; Weng YX; Wang YZ Polymers (Basel); 2018 Jun; 10(6):. PubMed ID: 30966656 [TBL] [Abstract][Full Text] [Related]
18. Ultralight and shapeable nanocellulose/metal-organic framework aerogel with hierarchical cellular architecture for highly efficient adsorption of Cu(II) ions. Mo L; Shen Y; Tan Y; Zhang S Int J Biol Macromol; 2021 Dec; 193(Pt B):1488-1498. PubMed ID: 34740681 [TBL] [Abstract][Full Text] [Related]
19. Bacterial cellulose aerogels: Influence of oxidation and silanization on mechanical and absorption properties. Pereira ALS; Feitosa JPA; Morais JPS; Rosa MF Carbohydr Polym; 2020 Dec; 250():116927. PubMed ID: 33049841 [TBL] [Abstract][Full Text] [Related]
20. A review on recent advances towards sustainable development of bio-inspired agri-waste based cellulose aerogels. Jayan SS; Jayan JS; Saritha A Int J Biol Macromol; 2023 Sep; 248():125928. PubMed ID: 37481183 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]