These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 38901830)

  • 1. The Amount and Pattern of Reciprocal Compensations Predict Performance Stability in a Visually Guided Finger Force Production Task.
    Andrade V; Carver NS; Grover FM; Bonnette S; Silva PL
    Motor Control; 2024 Jun; ():1-22. PubMed ID: 38901830
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Dynamical Approach to the Uncontrolled Manifold: Predicting Performance Error During Steady-State Isometric Force Production.
    Grover FM; Andrade V; Carver NS; Bonnette S; Riley MA; Silva PL
    Motor Control; 2022 Oct; 26(4):536-557. PubMed ID: 35894879
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimality and stability of intentional and unintentional actions: II. Motor equivalence and structure of variance.
    Parsa B; Zatsiorsky VM; Latash ML
    Exp Brain Res; 2017 Feb; 235(2):457-470. PubMed ID: 27778048
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Error compensation during finger force production after one- and four-finger voluntarily fatiguing exercise.
    Kruger ES; Hoopes JA; Cordial RJ; Li S
    Exp Brain Res; 2007 Aug; 181(3):461-8. PubMed ID: 17443316
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Task-specific stability of abundant systems: Structure of variance and motor equivalence.
    Mattos D; Schöner G; Zatsiorsky VM; Latash ML
    Neuroscience; 2015 Dec; 310():600-15. PubMed ID: 26434623
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stability of hand force production. I. Hand level control variables and multifinger synergies.
    Reschechtko S; Latash ML
    J Neurophysiol; 2017 Dec; 118(6):3152-3164. PubMed ID: 28904102
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Force-stabilizing synergies in motor tasks involving two actors.
    Solnik S; Reschechtko S; Wu YH; Zatsiorsky VM; Latash ML
    Exp Brain Res; 2015 Oct; 233(10):2935-49. PubMed ID: 26105756
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On the nature of unintentional action: a study of force/moment drifts during multifinger tasks.
    Parsa B; O'Shea DJ; Zatsiorsky VM; Latash ML
    J Neurophysiol; 2016 Aug; 116(2):698-708. PubMed ID: 27193319
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The synergic control of multi-finger force production: stability of explicit and implicit task components.
    Reschechtko S; Zatsiorsky VM; Latash ML
    Exp Brain Res; 2017 Jan; 235(1):1-14. PubMed ID: 27601252
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Visual and somatosensory feedback mechanisms of precision manual motor control in autism spectrum disorder.
    Shafer RL; Wang Z; Bartolotti J; Mosconi MW
    J Neurodev Disord; 2021 Sep; 13(1):32. PubMed ID: 34496766
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multi-Finger Interaction and Synergies in Finger Flexion and Extension Force Production.
    Park J; Xu D
    Front Hum Neurosci; 2017; 11():318. PubMed ID: 28674489
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multi-finger synergies and the muscular apparatus of the hand.
    Cuadra C; Bartsch A; Tiemann P; Reschechtko S; Latash ML
    Exp Brain Res; 2018 May; 236(5):1383-1393. PubMed ID: 29532100
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Finger interaction in a three-dimensional pressing task.
    Kapur S; Friedman J; Zatsiorsky VM; Latash ML
    Exp Brain Res; 2010 May; 203(1):101-18. PubMed ID: 20336281
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stability of hand force production. II. Ascending and descending synergies.
    Reschechtko S; Latash ML
    J Neurophysiol; 2018 Sep; 120(3):1045-1060. PubMed ID: 29873618
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Age-related changes in finger coordination in static prehension tasks.
    Shim JK; Lay BS; Zatsiorsky VM; Latash ML
    J Appl Physiol (1985); 2004 Jul; 97(1):213-24. PubMed ID: 15003998
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exploring the Concept of Iso-perceptual Manifold (IPM): A Study of Finger Force-Matching Tasks.
    Cuadra C; Latash ML
    Neuroscience; 2019 Mar; 401():130-141. PubMed ID: 30673586
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Individual preferences in motor coordination seen across the two hands: relations to movement stability and optimality.
    de Freitas PB; Freitas SMSF; Lewis MM; Huang X; Latash ML
    Exp Brain Res; 2019 Jan; 237(1):1-13. PubMed ID: 30298294
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stability of steady hand force production explored across spaces and methods of analysis.
    de Freitas PB; Freitas SMSF; Lewis MM; Huang X; Latash ML
    Exp Brain Res; 2018 Jun; 236(6):1545-1562. PubMed ID: 29564506
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Visual feedback improves bimanual force control performances at planning and execution levels.
    Kim HJ; Lee JH; Kang N; Cauraugh JH
    Sci Rep; 2021 Oct; 11(1):21149. PubMed ID: 34707163
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Finger pressing task data collected with and without post-trial performance feedback.
    Balamurugan S; Varadhan SKM
    Data Brief; 2020 Apr; 29():105127. PubMed ID: 32025541
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.