These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 38902175)

  • 41. Enhanced clay formation key in sustaining the Middle Eocene Climatic Optimum.
    Krause AJ; Sluijs A; van der Ploeg R; Lenton TM; Pogge von Strandmann PAE
    Nat Geosci; 2023; 16(8):730-738. PubMed ID: 37564379
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Impacts of hydrologic variations on chemical weathering and solute sources in the Min River basin, Himalayan-Tibetan region.
    Zhong J; Li SL; Tao F; Ding H; Liu J
    Environ Sci Pollut Res Int; 2017 Aug; 24(23):19126-19137. PubMed ID: 28660516
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Long-term stability of global erosion rates and weathering during late-Cenozoic cooling.
    Willenbring JK; von Blanckenburg F
    Nature; 2010 May; 465(7295):211-4. PubMed ID: 20463736
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A framework for predicting global silicate weathering and CO2 drawdown rates over geologic time-scales.
    Hilley GE; Porder S
    Proc Natl Acad Sci U S A; 2008 Nov; 105(44):16855-9. PubMed ID: 18952842
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Mid-Pleistocene transition in glacial cycles explained by declining CO
    Willeit M; Ganopolski A; Calov R; Brovkin V
    Sci Adv; 2019 Apr; 5(4):eaav7337. PubMed ID: 30949580
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Negative CO
    Meysman FJ; Montserrat F
    Biol Lett; 2017 Apr; 13(4):. PubMed ID: 28381634
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Chemical weathering and atmospheric carbon dioxide (CO
    Vinnarasi F; Srinivasamoorthy K; Saravanan K; Gopinath S; Prakash R; Ponnumani G; Babu C
    Environ Geochem Health; 2021 Feb; 43(2):771-790. PubMed ID: 32095933
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Middle Eocene greenhouse warming facilitated by diminished weathering feedback.
    van der Ploeg R; Selby D; Cramwinckel MJ; Li Y; Bohaty SM; Middelburg JJ; Sluijs A
    Nat Commun; 2018 Jul; 9(1):2877. PubMed ID: 30038400
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Global silicate weathering flux overestimated because of sediment-water cation exchange.
    Tipper ET; Stevenson EI; Alcock V; Knight ACG; Baronas JJ; Hilton RG; Bickle MJ; Larkin CS; Feng L; Relph KE; Hughes G
    Proc Natl Acad Sci U S A; 2021 Jan; 118(1):. PubMed ID: 33443143
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Snowball Earth climate dynamics and Cryogenian geology-geobiology.
    Hoffman PF; Abbot DS; Ashkenazy Y; Benn DI; Brocks JJ; Cohen PA; Cox GM; Creveling JR; Donnadieu Y; Erwin DH; Fairchild IJ; Ferreira D; Goodman JC; Halverson GP; Jansen MF; Le Hir G; Love GD; Macdonald FA; Maloof AC; Partin CA; Ramstein G; Rose BEJ; Rose CV; Sadler PM; Tziperman E; Voigt A; Warren SG
    Sci Adv; 2017 Nov; 3(11):e1600983. PubMed ID: 29134193
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Ice core evidence for atmospheric oxygen decline since the Mid-Pleistocene transition.
    Yan Y; Brook EJ; Kurbatov AV; Severinghaus JP; Higgins JA
    Sci Adv; 2021 Dec; 7(51):eabj9341. PubMed ID: 34910502
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Carbonate deposition, climate stability, and Neoproterozoic ice ages.
    Ridgwell AJ; Kennedy MJ; Caldeira K
    Science; 2003 Oct; 302(5646):859-62. PubMed ID: 14593177
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Snowball Earth termination by destabilization of equatorial permafrost methane clathrate.
    Kennedy M; Mrofka D; von der Borch C
    Nature; 2008 May; 453(7195):642-5. PubMed ID: 18509441
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Moderate greenhouse climate and rapid carbonate formation after Marinoan snowball Earth.
    Ramme L; Ilyina T; Marotzke J
    Nat Commun; 2024 Apr; 15(1):3571. PubMed ID: 38670992
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Potential of global croplands and bioenergy crops for climate change mitigation through deployment for enhanced weathering.
    Kantola IB; Masters MD; Beerling DJ; Long SP; DeLucia EH
    Biol Lett; 2017 Apr; 13(4):. PubMed ID: 28381630
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Constraining the Capacity of Global Croplands to CO
    Haque F; Khalidy R; Chiang YW; Santos RM
    ACS Earth Space Chem; 2023 Jul; 7(7):1294-1305. PubMed ID: 37492628
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Atmospheric oxygen regulation at low Proterozoic levels by incomplete oxidative weathering of sedimentary organic carbon.
    Daines SJ; Mills BJ; Lenton TM
    Nat Commun; 2017 Feb; 8():14379. PubMed ID: 28148950
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Microbial chemolithotrophy mediates oxidative weathering of granitic bedrock.
    Napieralski SA; Buss HL; Brantley SL; Lee S; Xu H; Roden EE
    Proc Natl Acad Sci U S A; 2019 Dec; 116(52):26394-26401. PubMed ID: 31843926
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Transient cooling episodes during Cretaceous Oceanic Anoxic Events with special reference to OAE 1a (Early Aptian).
    Jenkyns HC
    Philos Trans A Math Phys Eng Sci; 2018 Oct; 376(2130):. PubMed ID: 30177559
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Dissolved inorganic carbon budget of two alpine catchments in the central Tibetan Plateau: Glaciation matters.
    Yu Z; Li J; Wu G; Qu D; Wang F; Ming X; Qiu H; Liu Z; Maurischat P
    Sci Total Environ; 2023 Nov; 898():165191. PubMed ID: 37391134
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.