These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 38903220)
21. Two distinct anionic phospholipid-dependent events involved in SecA-mediated protein translocation. Koch S; Exterkate M; López CA; Patro M; Marrink SJ; Driessen AJM Biochim Biophys Acta Biomembr; 2019 Nov; 1861(11):183035. PubMed ID: 31394098 [TBL] [Abstract][Full Text] [Related]
22. Energetics of substrate transport in proton-dependent oligopeptide transporters. Selvam B; Chiang N; Shukla D bioRxiv; 2024 May; ():. PubMed ID: 38746282 [TBL] [Abstract][Full Text] [Related]
23. Investigation of sugar binding kinetics of the E. coli sugar/H Bazzone A; Tesmer L; Kurt D; Kaback HR; Fendler K; Madej MG J Biol Chem; 2022 Feb; 298(2):101505. PubMed ID: 34929170 [TBL] [Abstract][Full Text] [Related]
24. Effect of charge, hydrophobicity, and sequence of nucleoporins on the translocation of model particles through the nuclear pore complex. Tagliazucchi M; Peleg O; Kröger M; Rabin Y; Szleifer I Proc Natl Acad Sci U S A; 2013 Feb; 110(9):3363-8. PubMed ID: 23404701 [TBL] [Abstract][Full Text] [Related]
25. Movement of Arginine through OprD: The Energetics of Permeation and the Role of Lipopolysaccharide in Directing Arginine to the Protein. Samsudin F; Khalid S J Phys Chem B; 2019 Apr; 123(13):2824-2832. PubMed ID: 30839215 [TBL] [Abstract][Full Text] [Related]
26. Exploring the dynamics of the ABCB1 membrane transporter P-glycoprotein in the presence of ATP and active/non-active compounds through molecular dynamics simulations. Mora Lagares L; Pérez-Castillo Y; Novič M Toxicology; 2024 Feb; 502():153732. PubMed ID: 38272384 [TBL] [Abstract][Full Text] [Related]
27. Emerging issues of connexin channels: biophysics fills the gap. Harris AL Q Rev Biophys; 2001 Aug; 34(3):325-472. PubMed ID: 11838236 [TBL] [Abstract][Full Text] [Related]
28. Mechanism of transient binding and release of substrate protein during the allosteric cycle of the p97 nanomachine. Tonddast-Navaei S; Stan G J Am Chem Soc; 2013 Oct; 135(39):14627-36. PubMed ID: 24007343 [TBL] [Abstract][Full Text] [Related]
30. Genetic, cellular, and structural characterization of the membrane potential-dependent cell-penetrating peptide translocation pore. Trofimenko E; Grasso G; Heulot M; Chevalier N; Deriu MA; Dubuis G; Arribat Y; Serulla M; Michel S; Vantomme G; Ory F; Dam LC; Puyal J; Amati F; Lüthi A; Danani A; Widmann C Elife; 2021 Oct; 10():. PubMed ID: 34713805 [TBL] [Abstract][Full Text] [Related]
31. Rapid substrate translocation by the multisubunit, erythroid glucose transporter requires subunit associations but not cooperative ligand binding. Coderre PE; Cloherty EK; Zottola RJ; Carruthers A Biochemistry; 1995 Aug; 34(30):9762-73. PubMed ID: 7626647 [TBL] [Abstract][Full Text] [Related]
32. Role of conserved transmembrane cationic amino acids in the prostaglandin transporter PGT. Chan BS; Bao Y; Schuster VL Biochemistry; 2002 Jul; 41(29):9215-21. PubMed ID: 12119036 [TBL] [Abstract][Full Text] [Related]
33. Insights into membrane translocation of the cell-penetrating peptide pVEC from molecular dynamics calculations. Alaybeyoglu B; Sariyar Akbulut B; Ozkirimli E J Biomol Struct Dyn; 2016 Nov; 34(11):2387-98. PubMed ID: 26569019 [TBL] [Abstract][Full Text] [Related]
34. Metal selectivity and translocation mechanism characterization in proteoliposomes of the transmembrane NiCoT transporter NixA from Hernandez JA; Micus PS; Sunga SAL; Mazzei L; Ciurli S; Meloni G Chem Sci; 2024 Jan; 15(2):651-665. PubMed ID: 38179545 [TBL] [Abstract][Full Text] [Related]
35. Insights into Membrane Translocation of Protegrin Antimicrobial Peptides by Multistep Molecular Dynamics Simulations. Lai PK; Kaznessis YN ACS Omega; 2018 Jun; 3(6):6056-6065. PubMed ID: 29978143 [TBL] [Abstract][Full Text] [Related]
36. Tuning the affinity of anion binding sites in porin channels with negatively charged residues: molecular details for OprP. Modi N; Bárcena-Uribarri I; Bains M; Benz R; Hancock RE; Kleinekathöfer U ACS Chem Biol; 2015 Feb; 10(2):441-51. PubMed ID: 25333751 [TBL] [Abstract][Full Text] [Related]
37. Getting Drugs through Small Pores: Exploiting the Porins Pathway in Pseudomonas aeruginosa. Samanta S; Bodrenko I; Acosta-Gutiérrez S; D'Agostino T; Pathania M; Ghai I; Schleberger C; Bumann D; Wagner R; Winterhalter M; van den Berg B; Ceccarelli M ACS Infect Dis; 2018 Oct; 4(10):1519-1528. PubMed ID: 30039960 [TBL] [Abstract][Full Text] [Related]
38. Transport of charged dipeptides by the intestinal H+/peptide symporter PepT1 expressed in Xenopus laevis oocytes. Amasheh S; Wenzel U; Boll M; Dorn D; Weber W; Clauss W; Daniel H J Membr Biol; 1997 Feb; 155(3):247-56. PubMed ID: 9050448 [TBL] [Abstract][Full Text] [Related]
39. The mechanism of substrate release by the aspartate transporter GltPh: insights from simulations. DeChancie J; Shrivastava IH; Bahar I Mol Biosyst; 2011 Mar; 7(3):832-42. PubMed ID: 21161089 [TBL] [Abstract][Full Text] [Related]
40. Molecular simulations elucidate the substrate translocation pathway in a glutamate transporter. Gu Y; Shrivastava IH; Amara SG; Bahar I Proc Natl Acad Sci U S A; 2009 Feb; 106(8):2589-94. PubMed ID: 19202063 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]