These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 38903425)

  • 21. Time-Series Field Phenotyping of Soybean Growth Analysis by Combining Multimodal Deep Learning and Dynamic Modeling.
    Yu H; Weng L; Wu S; He J; Yuan Y; Wang J; Xu X; Feng X
    Plant Phenomics; 2024; 6():0158. PubMed ID: 38524738
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Assessment of Soybean Lodging Using UAV Imagery and Machine Learning.
    Sarkar S; Zhou J; Scaboo A; Zhou J; Aloysius N; Lim TT
    Plants (Basel); 2023 Aug; 12(16):. PubMed ID: 37631105
    [TBL] [Abstract][Full Text] [Related]  

  • 23. UAV-based multi-sensor data fusion and machine learning algorithm for yield prediction in wheat.
    Fei S; Hassan MA; Xiao Y; Su X; Chen Z; Cheng Q; Duan F; Chen R; Ma Y
    Precis Agric; 2023; 24(1):187-212. PubMed ID: 35967193
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Field-Based Scoring of Soybean Iron Deficiency Chlorosis Using RGB Imaging and Statistical Learning.
    Bai G; Jenkins S; Yuan W; Graef GL; Ge Y
    Front Plant Sci; 2018; 9():1002. PubMed ID: 30050552
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Retrieving rice (
    Wu T; Zhang W; Wu S; Cheng M; Qi L; Shao G; Jiao X
    Front Plant Sci; 2022; 13():1088499. PubMed ID: 36762179
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Combining spectral and texture feature of UAV image with plant height to improve LAI estimation of winter wheat at jointing stage.
    Zou M; Liu Y; Fu M; Li C; Zhou Z; Meng H; Xing E; Ren Y
    Front Plant Sci; 2023; 14():1272049. PubMed ID: 38235191
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Assessment of intertidal seaweed biomass based on RGB imagery.
    Chen J; Li X; Wang K; Zhang S; Li J; Sun M
    PLoS One; 2022; 17(2):e0263416. PubMed ID: 35202425
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Phenomics based prediction of plant biomass and leaf area in wheat using machine learning approaches.
    Singh B; Kumar S; Elangovan A; Vasht D; Arya S; Duc NT; Swami P; Pawar GS; Raju D; Krishna H; Sathee L; Dalal M; Sahoo RN; Chinnusamy V
    Front Plant Sci; 2023; 14():1214801. PubMed ID: 37448870
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Above-Ground Biomass Estimation in Oats Using UAV Remote Sensing and Machine Learning.
    Sharma P; Leigh L; Chang J; Maimaitijiang M; Caffé M
    Sensors (Basel); 2022 Jan; 22(2):. PubMed ID: 35062559
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fusion of hyperspectral imaging (HSI) and RGB for identification of soybean kernel damages using ShuffleNet with convolutional optimization and cross stage partial architecture.
    Zheng L; Zhao M; Zhu J; Huang L; Zhao J; Liang D; Zhang D
    Front Plant Sci; 2022; 13():1098864. PubMed ID: 36743540
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Extraction of soybean plant trait parameters based on SfM-MVS algorithm combined with GRNN.
    He W; Ye Z; Li M; Yan Y; Lu W; Xing G
    Front Plant Sci; 2023; 14():1181322. PubMed ID: 37560031
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Improved estimation of aboveground biomass in wheat from RGB imagery and point cloud data acquired with a low-cost unmanned aerial vehicle system.
    Lu N; Zhou J; Han Z; Li D; Cao Q; Yao X; Tian Y; Zhu Y; Cao W; Cheng T
    Plant Methods; 2019; 15():17. PubMed ID: 30828356
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Machine learning for high-throughput field phenotyping and image processing provides insight into the association of above and below-ground traits in cassava (
    Selvaraj MG; Valderrama M; Guzman D; Valencia M; Ruiz H; Acharjee A
    Plant Methods; 2020; 16():87. PubMed ID: 32549903
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Phenotyping of Plant Biomass and Performance Traits Using Remote Sensing Techniques in Pea (
    Quirós Vargas JJ; Zhang C; Smitchger JA; McGee RJ; Sankaran S
    Sensors (Basel); 2019 Apr; 19(9):. PubMed ID: 31052251
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Genome-wide association analysis for yield-related traits at the R6 stage in a Chinese soybean mini core collection.
    Li X; Zhou Y; Bu Y; Wang X; Zhang Y; Guo N; Zhao J; Xing H
    Genes Genomics; 2021 Aug; 43(8):897-912. PubMed ID: 33956328
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A real-time phenotyping framework using machine learning for plant stress severity rating in soybean.
    Naik HS; Zhang J; Lofquist A; Assefa T; Sarkar S; Ackerman D; Singh A; Singh AK; Ganapathysubramanian B
    Plant Methods; 2017; 13():23. PubMed ID: 28405214
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Qualification of Soybean Responses to Flooding Stress Using UAV-Based Imagery and Deep Learning.
    Zhou J; Mou H; Zhou J; Ali ML; Ye H; Chen P; Nguyen HT
    Plant Phenomics; 2021; 2021():9892570. PubMed ID: 34286285
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Deep Multiview Image Fusion for Soybean Yield Estimation in Breeding Applications.
    Riera LG; Carroll ME; Zhang Z; Shook JM; Ghosal S; Gao T; Singh A; Bhattacharya S; Ganapathysubramanian B; Singh AK; Sarkar S
    Plant Phenomics; 2021; 2021():9846470. PubMed ID: 34250507
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Multi temporal multispectral UAV remote sensing allows for yield assessment across European wheat varieties already before flowering.
    Camenzind MP; Yu K
    Front Plant Sci; 2023; 14():1214931. PubMed ID: 38235203
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Enhancing estimation of cover crop biomass using field-based high-throughput phenotyping and machine learning models.
    Bai G; Koehler-Cole K; Scoby D; Thapa VR; Basche A; Ge Y
    Front Plant Sci; 2023; 14():1277672. PubMed ID: 38259938
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.