These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 38903437)

  • 1. Development of a machine vision-based weight prediction system of butterhead lettuce (
    Kim JG; Moon S; Park J; Kim T; Chung S
    Front Plant Sci; 2024; 15():1365266. PubMed ID: 38903437
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automatic monitoring of lettuce fresh weight by multi-modal fusion based deep learning.
    Lin Z; Fu R; Ren G; Zhong R; Ying Y; Lin T
    Front Plant Sci; 2022; 13():980581. PubMed ID: 36092436
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lettuce Production in Intelligent Greenhouses-3D Imaging and Computer Vision for Plant Spacing Decisions.
    Petropoulou AS; van Marrewijk B; de Zwart F; Elings A; Bijlaard M; van Daalen T; Jansen G; Hemming S
    Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36991638
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Estimation of Greenhouse Lettuce Growth Indices Based on a Two-Stage CNN Using RGB-D Images.
    Gang MS; Kim HJ; Kim DW
    Sensors (Basel); 2022 Jul; 22(15):. PubMed ID: 35898004
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deep convolutional neural network and IoT technology for healthcare.
    Wassan S; Dongyan H; Suhail B; Jhanjhi NZ; Xiao G; Ahmed S; Murugesan RK
    Digit Health; 2024; 10():20552076231220123. PubMed ID: 38250147
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hyperspectral Technique Combined With Deep Learning Algorithm for Prediction of Phenotyping Traits in Lettuce.
    Yu S; Fan J; Lu X; Wen W; Shao S; Guo X; Zhao C
    Front Plant Sci; 2022; 13():927832. PubMed ID: 35845657
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tree-level almond yield estimation from high resolution aerial imagery with convolutional neural network.
    Tang M; Sadowski DL; Peng C; Vougioukas SG; Klever B; Khalsa SDS; Brown PH; Jin Y
    Front Plant Sci; 2023; 14():1070699. PubMed ID: 36875622
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Estimation of rice seedling growth traits with an end-to-end multi-objective deep learning framework.
    Ye Z; Tan X; Dai M; Lin Y; Chen X; Nie P; Ruan Y; Kong D
    Front Plant Sci; 2023; 14():1165552. PubMed ID: 37332711
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Abdomen CT multi-organ segmentation using token-based MLP-Mixer.
    Pan S; Chang CW; Wang T; Wynne J; Hu M; Lei Y; Liu T; Patel P; Roper J; Yang X
    Med Phys; 2023 May; 50(5):3027-3038. PubMed ID: 36463516
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Leaf-Movement-Based Growth Prediction Model Using Optical Flow Analysis and Machine Learning in Plant Factory.
    Nagano S; Moriyuki S; Wakamori K; Mineno H; Fukuda H
    Front Plant Sci; 2019; 10():227. PubMed ID: 30967880
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automatic Image-Based Plant Disease Severity Estimation Using Deep Learning.
    Wang G; Sun Y; Wang J
    Comput Intell Neurosci; 2017; 2017():2917536. PubMed ID: 28757863
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Use of synthetic images for training a deep learning model for weed detection and biomass estimation in cotton.
    Sapkota BB; Popescu S; Rajan N; Leon RG; Reberg-Horton C; Mirsky S; Bagavathiannan MV
    Sci Rep; 2022 Nov; 12(1):19580. PubMed ID: 36379963
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automatic detection of pesticide residues on the surface of lettuce leaves using images of feature wavelengths spectrum.
    Sun L; Cui X; Fan X; Suo X; Fan B; Zhang X
    Front Plant Sci; 2022; 13():929999. PubMed ID: 36777538
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Machine learning for high-throughput field phenotyping and image processing provides insight into the association of above and below-ground traits in cassava (
    Selvaraj MG; Valderrama M; Guzman D; Valencia M; Ruiz H; Acharjee A
    Plant Methods; 2020; 16():87. PubMed ID: 32549903
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automated glioma grading on conventional MRI images using deep convolutional neural networks.
    Zhuge Y; Ning H; Mathen P; Cheng JY; Krauze AV; Camphausen K; Miller RW
    Med Phys; 2020 Jul; 47(7):3044-3053. PubMed ID: 32277478
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detection of Tip-Burn Stress on Lettuce Grown in an Indoor Environment Using Deep Learning Algorithms.
    Hamidon MH; Ahamed T
    Sensors (Basel); 2022 Sep; 22(19):. PubMed ID: 36236351
    [TBL] [Abstract][Full Text] [Related]  

  • 17. RootNav 2.0: Deep learning for automatic navigation of complex plant root architectures.
    Yasrab R; Atkinson JA; Wells DM; French AP; Pridmore TP; Pound MP
    Gigascience; 2019 Nov; 8(11):. PubMed ID: 31702012
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vertical farming for lettuce production in limited space: a case study in Northern Thailand.
    Wicharuck S; Khongdee N; Man A; Syahputra WNH; Yalangkan P; Chaiphak P; Chaichana C
    PeerJ; 2024; 12():e17085. PubMed ID: 38618565
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Side Lighting of Red, Blue and Green Spectral Combinations Altered the Growth, Yield and Quality of Lettuce (
    Chen R; Wang Z; Liu W; Ding Y; Zhang Q; Wang S
    Plants (Basel); 2023 Dec; 12(24):. PubMed ID: 38140474
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automated Machine Learning: A Case Study of Genomic "Image-Based" Prediction in Maize Hybrids.
    Galli G; Sabadin F; Yassue RM; Galves C; Carvalho HF; Crossa J; Montesinos-López OA; Fritsche-Neto R
    Front Plant Sci; 2022; 13():845524. PubMed ID: 35321444
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.