These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 38903441)

  • 1. Editorial: Plant architectural models and crop production.
    Letort V; Kang M; de Reffye P
    Front Plant Sci; 2024; 15():1430205. PubMed ID: 38903441
    [No Abstract]   [Full Text] [Related]  

  • 2. Quantification of the effects of architectural traits on dry mass production and light interception of tomato canopy under different temperature regimes using a dynamic functional-structural plant model.
    Chen TW; Nguyen TM; Kahlen K; Stützel H
    J Exp Bot; 2014 Dec; 65(22):6399-410. PubMed ID: 25183746
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional-Structural Plant Models Mission in Advancing Crop Science: Opportunities and Prospects.
    Soualiou S; Wang Z; Sun W; de Reffye P; Collins B; Louarn G; Song Y
    Front Plant Sci; 2021; 12():747142. PubMed ID: 35003151
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High temperature and vapor pressure deficit aggravate architectural effects but ameliorate non-architectural effects of salinity on dry mass production of tomato.
    Chen TW; Nguyen TM; Kahlen K; Stützel H
    Front Plant Sci; 2015; 6():887. PubMed ID: 26539203
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Use of 3D modeling to refine predictions of canopy light utilization: A comparative study on canopy photosynthesis models with different dimensions.
    Gu S; Wen W; Xu T; Lu X; Yu Z; Guo X; Zhao C
    Front Plant Sci; 2022; 13():735981. PubMed ID: 36061758
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ALAMEDA, a structural-functional model for faba bean crops: morphological parameterization and verification.
    Ruiz-Ramos M; Mínguez MI
    Ann Bot; 2006 Mar; 97(3):377-88. PubMed ID: 16390842
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Primed acclimation: A physiological process offers a strategy for more resilient and irrigation-efficient crop production.
    Vincent C; Rowland D; Schaffer B; Bassil E; Racette K; Zurweller B
    Plant Sci; 2020 Jun; 295():110240. PubMed ID: 32534621
    [TBL] [Abstract][Full Text] [Related]  

  • 8. OpenSimRoot: widening the scope and application of root architectural models.
    Postma JA; Kuppe C; Owen MR; Mellor N; Griffiths M; Bennett MJ; Lynch JP; Watt M
    New Phytol; 2017 Aug; 215(3):1274-1286. PubMed ID: 28653341
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Understanding plant-soil interactions underpins enhanced sustainability of crop production.
    Wang X; Cheng L; Xiong C; Whalley WR; Miller AJ; Rengel Z; Zhang F; Shen J
    Trends Plant Sci; 2024 Jun; ():. PubMed ID: 38897884
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computing competition for light in the GREENLAB model of plant growth: a contribution to the study of the effects of density on resource acquisition and architectural development.
    Cournède PH; Mathieu A; Houllier F; Barthélémy D; de Reffye P
    Ann Bot; 2008 May; 101(8):1207-19. PubMed ID: 18037666
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crop/Plant Modeling Supports Plant Breeding: II. Guidance of Functional Plant Phenotyping for Trait Discovery.
    Zhang P; Huang J; Ma Y; Wang X; Kang M; Song Y
    Plant Phenomics; 2023; 5():0091. PubMed ID: 37780969
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crop Model Parameterisation of Three Important Pearl Millet Varieties for Improved Water Use and Yield Estimation.
    Ausiku PA; Annandale JG; Steyn JM; Sanewe AJ
    Plants (Basel); 2022 Mar; 11(6):. PubMed ID: 35336688
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A dynamic, architectural plant model simulating resource-dependent growth.
    Yan HP; Kang MZ; de Reffye P; Dingkuhn M
    Ann Bot; 2004 May; 93(5):591-602. PubMed ID: 15056562
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crop/Plant Modeling Supports Plant Breeding: I. Optimization of Environmental Factors in Accelerating Crop Growth and Development for Speed Breeding.
    Yu Y; Cheng Q; Wang F; Zhu Y; Shang X; Jones A; He H; Song Y
    Plant Phenomics; 2023; 5():0099. PubMed ID: 37817886
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Virtual Plants Need Water Too: Functional-Structural Root System Models in the Context of Drought Tolerance Breeding.
    Ndour A; Vadez V; Pradal C; Lucas M
    Front Plant Sci; 2017; 8():1577. PubMed ID: 29018456
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Leaf, plant, to canopy: A mechanistic study on aboveground plasticity and plant density within a maize-soybean intercrop system for the Midwest, USA.
    Pelech EA; Evers JB; Pederson TL; Drag DW; Fu P; Bernacchi CJ
    Plant Cell Environ; 2023 Feb; 46(2):405-421. PubMed ID: 36358006
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessing the effects of architectural variations on light partitioning within virtual wheat-pea mixtures.
    Barillot R; Escobar-Gutiérrez AJ; Fournier C; Huynh P; Combes D
    Ann Bot; 2014 Sep; 114(4):725-37. PubMed ID: 24907314
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Breeding for high water-use efficiency.
    Condon AG; Richards RA; Rebetzke GJ; Farquhar GD
    J Exp Bot; 2004 Nov; 55(407):2447-60. PubMed ID: 15475373
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Can diversity in root architecture explain plant water use efficiency? A modeling study.
    Tron S; Bodner G; Laio F; Ridolfi L; Leitner D
    Ecol Modell; 2015 Sep; 312():200-210. PubMed ID: 26412932
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simultaneous improvement in productivity, water use, and albedo through crop structural modification.
    Drewry DT; Kumar P; Long SP
    Glob Chang Biol; 2014 Jun; 20(6):1955-67. PubMed ID: 24700722
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.