These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 38903563)

  • 1. Effect of a synthetic hydroxyapatite-based bone grafting material compared to established bone substitute materials on regeneration of critical-size bone defects in the ovine scapula.
    Wüster J; Neckel N; Sterzik F; Xiang-Tischhauser L; Barnewitz D; Genzel A; Koerdt S; Rendenbach C; Müller-Mai C; Heiland M; Nahles S; Knabe C
    Regen Biomater; 2024; 11():rbae041. PubMed ID: 38903563
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of silicon-doped calcium phosphate bone grafting materials on bone regeneration and osteogenic marker expression after implantation in the ovine scapula.
    Knabe C; Adel-Khattab D; Hübner WD; Peters F; Knauf T; Peleska B; Barnewitz D; Genzel A; Kusserow R; Sterzik F; Stiller M; Müller-Mai C
    J Biomed Mater Res B Appl Biomater; 2019 Apr; 107(3):594-614. PubMed ID: 29770578
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel ceramic bone replacement material Osbone® in a comparative in vitro study with osteoblasts.
    Bernhardt A; Lode A; Peters F; Gelinsky M
    Clin Oral Implants Res; 2011 Jun; 22(6):651-7. PubMed ID: 21044164
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of a Particulate and a Putty-Like Tricalcium Phosphate-Based Bone-grafting Material on Bone Formation, Volume Stability and Osteogenic Marker Expression after Bilateral Sinus Floor Augmentation in Humans.
    Knabe C; Adel-Khattab D; Kluk E; Struck R; Stiller M
    J Funct Biomater; 2017 Jul; 8(3):. PubMed ID: 28758916
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Performance of Nano-Hydroxyapatite/Beta-Tricalcium Phosphate and Xenogenic Hydroxyapatite on Bone Regeneration in Rat Calvarial Defects: Histomorphometric, Immunohistochemical and Ultrastructural Analysis.
    da Silva Brum I; Frigo L; Goncalo Pinto Dos Santos P; Nelson Elias C; da Fonseca GAMD; Jose de Carvalho J
    Int J Nanomedicine; 2021; 16():3473-3485. PubMed ID: 34040373
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of beta-tricalcium phosphate particles with varying porosity on osteogenesis after sinus floor augmentation in humans.
    Knabe C; Koch C; Rack A; Stiller M
    Biomaterials; 2008 May; 29(14):2249-58. PubMed ID: 18289665
    [TBL] [Abstract][Full Text] [Related]  

  • 7. beta-Tricalcium phosphate promotes cell proliferation, osteogenesis and bone regeneration in intrabony defects in dogs.
    Neamat A; Gawish A; Gamal-Eldeen AM
    Arch Oral Biol; 2009 Dec; 54(12):1083-90. PubMed ID: 19828137
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chitosan/gelatin/platelet gel enriched by a combination of hydroxyapatite and beta-tricalcium phosphate in healing of a radial bone defect model in rat.
    Oryan A; Alidadi S; Bigham-Sadegh A; Meimandi-Parizi A
    Int J Biol Macromol; 2017 Aug; 101():630-637. PubMed ID: 28363647
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The chemical composition of synthetic bone substitutes influences tissue reactions in vivo: histological and histomorphometrical analysis of the cellular inflammatory response to hydroxyapatite, beta-tricalcium phosphate and biphasic calcium phosphate ceramics.
    Ghanaati S; Barbeck M; Detsch R; Deisinger U; Hilbig U; Rausch V; Sader R; Unger RE; Ziegler G; Kirkpatrick CJ
    Biomed Mater; 2012 Feb; 7(1):015005. PubMed ID: 22287541
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biodegradation property of beta-tricalcium phosphate-collagen composite in accordance with bone formation: a comparative study with Bio-Oss Collagen® in a rat critical-size defect model.
    Kato E; Lemler J; Sakurai K; Yamada M
    Clin Implant Dent Relat Res; 2014 Apr; 16(2):202-11. PubMed ID: 22809239
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A comparison between the efficacy of Bio-Oss, hydroxyapatite tricalcium phosphate and combination of mesenchymal stem cells in inducing bone regeneration.
    Vahabi S; Amirizadeh N; Shokrgozar MA; Mofeed R; Mashhadi A; Aghaloo M; Sharifi D; Jabbareh L
    Chang Gung Med J; 2012; 35(1):28-37. PubMed ID: 22483425
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New nano-hydroxyapatite in bone defect regeneration: A histological study in rats.
    Kubasiewicz-Ross P; Hadzik J; Seeliger J; Kozak K; Jurczyszyn K; Gerber H; Dominiak M; Kunert-Keil C
    Ann Anat; 2017 Sep; 213():83-90. PubMed ID: 28655570
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of autologous platelet-rich plasma in combination with a biphasic synthetic graft material on bone healing in critical-size cranial defects.
    Faratzis G; Leventis M; Chrysomali E; Khaldi L; Eleftheriadis A; Eleftheriadis I; Dontas I
    J Craniofac Surg; 2012 Sep; 23(5):1318-23. PubMed ID: 22976630
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative evaluation of bovine derived hydroxyapatite and synthetic hydroxyapatite graft in bone regeneration of human maxillary cystic defects: a clinico-radiological study.
    Kattimani VS; Chakravarthi SP; Neelima Devi KN; Sridhar MS; Prasad LK
    Indian J Dent Res; 2014; 25(5):594-601. PubMed ID: 25511058
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Osteogenic Effect of a Bioactive Calcium Alkali Phosphate Bone Substitute in Humans.
    Knabe C; Adel-Khattab D; Rezk M; Cheng J; Berger G; Gildenhaar R; Wilbig J; Günster J; Rack A; Heiland M; Knauf T; Stiller M
    Bioengineering (Basel); 2023 Dec; 10(12):. PubMed ID: 38135999
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vitro degradation and cell response of calcium carbonate composite ceramic in comparison with other synthetic bone substitute materials.
    He F; Zhang J; Yang F; Zhu J; Tian X; Chen X
    Mater Sci Eng C Mater Biol Appl; 2015 May; 50():257-65. PubMed ID: 25746269
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Experimental study of the effect of new bone formation on new type artificial bone composed of bioactive ceramics].
    Zhu M; Zeng Y; Sun T; Peng Q
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2005 Mar; 19(3):174-7. PubMed ID: 15828468
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impaction grafting with morsellised allograft and tricalcium phosphate-hydroxyapatite: incorporation within ovine metaphyseal bone defects.
    Pratt JN; Griffon DJ; Dunlop DG; Smith N; Howie CR
    Biomaterials; 2002 Aug; 23(16):3309-17. PubMed ID: 12099273
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Effect of Whitlockite as an Osteoconductive Synthetic Bone Substitute Material in Animal Bony Defect Model.
    Ku JK; Kim IH; Shim JH; Kim YH; Kim BH; Kim YK; Yun PY
    Materials (Basel); 2022 Mar; 15(5):. PubMed ID: 35269154
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anorganic bovine-derived hydroxyapatite vs β-tricalcium phosphate in sinus augmentation: a comparative histomorphometric study.
    Kurkcu M; Benlidayi ME; Cam B; Sertdemir Y
    J Oral Implantol; 2012 Sep; 38 Spec No():519-26. PubMed ID: 23072285
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.