These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 38903677)

  • 1. Improved synthesis and polymerase recognition of 7-deaza-7-modified α-l-threofuranosyl guanosine analogs.
    Barpuzary B; Negria S; Chaput JC
    RSC Adv; 2024 Jun; 14(28):19701-19706. PubMed ID: 38903677
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis and Evolution of a Threose Nucleic Acid Aptamer Bearing 7-Deaza-7-Substituted Guanosine Residues.
    Mei H; Liao JY; Jimenez RM; Wang Y; Bala S; McCloskey C; Switzer C; Chaput JC
    J Am Chem Soc; 2018 May; 140(17):5706-5713. PubMed ID: 29667819
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis and polymerase recognition of a pyrrolocytidine TNA triphosphate.
    Mei H; Wang Y; Yik EJ; Chaput JC
    Biopolymers; 2021 Jan; 112(1):e23388. PubMed ID: 32615644
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis of 2'-Deoxy-α-l-threofuranosyl Nucleoside Triphosphates.
    Bala S; Liao JY; Zhang L; Tran CN; Chim N; Chaput JC
    J Org Chem; 2018 Aug; 83(16):8840-8850. PubMed ID: 30011988
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis of threose nucleic acid (TNA) phosphoramidite monomers and oligonucleotide polymers.
    Zhang S; Chaput JC
    Curr Protoc Nucleic Acid Chem; 2012 Sep; Chapter 4():Unit4.51. PubMed ID: 22956457
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis of α-l-Threofuranosyl Nucleoside 3'-Monophosphates, 3'-Phosphoro(2-Methyl)imidazolides, and 3'-Triphosphates.
    Bala S; Liao JY; Mei H; Chaput JC
    J Org Chem; 2017 Jun; 82(11):5910-5916. PubMed ID: 28490177
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A one-pot synthesis of α-l-threofuranosyl nucleoside triphosphates (tNTPs).
    Sau SP; Chaput JC
    Bioorg Med Chem Lett; 2016 Jul; 26(14):3271-3273. PubMed ID: 27246616
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis of threose nucleic acid (TNA) triphosphates and oligonucleotides by polymerase-mediated primer extension.
    Zhang S; Yu H; Chaput JC
    Curr Protoc Nucleic Acid Chem; 2013 Mar; Chapter 4():4.54.1-4.54.17. PubMed ID: 23512696
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An improved synthesis of guanosine TNA phosphoramidite for oligonucleotide synthesis.
    Majumdar B; Sarma D; Lee EM; Setterholm NA; Chaput JC
    Nucleosides Nucleotides Nucleic Acids; 2024 Jun; ():1-12. PubMed ID: 38904107
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expanding the Horizon of the Xeno Nucleic Acid Space: Threose Nucleic Acids with Increased Information Storage.
    Depmeier H; Kath-Schorr S
    J Am Chem Soc; 2024 Mar; 146(11):7743-7751. PubMed ID: 38442021
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Base-pairing systems related to TNA containing phosphoramidate linkages: synthesis of building blocks and pairing properties.
    Ferencic M; Reddy G; Wu X; Guntha S; Nandy J; Krishnamurthy R; Eschenmoser A
    Chem Biodivers; 2004 Jul; 1(7):939-79. PubMed ID: 17191894
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Increasing the functional density of threose nucleic acid.
    Majumdar B; Sarma D; Yu Y; Lozoya-Colinas A; Chaput JC
    RSC Chem Biol; 2024 Jan; 5(1):41-48. PubMed ID: 38179195
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Redesigning the Genetic Polymers of Life.
    Chaput JC
    Acc Chem Res; 2021 Feb; 54(4):1056-1065. PubMed ID: 33533593
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Scalable Synthesis of α-L-Threose Nucleic Acid Monomers.
    Sau SP; Fahmi NE; Liao JY; Bala S; Chaput JC
    J Org Chem; 2016 Mar; 81(6):2302-7. PubMed ID: 26895480
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DNA polymerase-mediated synthesis of unbiased threose nucleic acid (TNA) polymers requires 7-deazaguanine to suppress G:G mispairing during TNA transcription.
    Dunn MR; Larsen AC; Zahurancik WJ; Fahmi NE; Meyers M; Suo Z; Chaput JC
    J Am Chem Soc; 2015 Apr; 137(12):4014-7. PubMed ID: 25785966
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis of a Fluorescent Cytidine TNA Triphosphate Analogue.
    Mei H; Chaput J
    Methods Mol Biol; 2019; 1973():27-37. PubMed ID: 31016694
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selective Prebiotic Synthesis of α-Threofuranosyl Cytidine by Photochemical Anomerization.
    Colville BWF; Powner MW
    Angew Chem Int Ed Engl; 2021 May; 60(19):10526-10530. PubMed ID: 33644959
    [TBL] [Abstract][Full Text] [Related]  

  • 18. TNA synthesis by DNA polymerases.
    Chaput JC; Szostak JW
    J Am Chem Soc; 2003 Aug; 125(31):9274-5. PubMed ID: 12889939
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Generating Biologically Stable TNA Aptamers that Function with High Affinity and Thermal Stability.
    Dunn MR; McCloskey CM; Buckley P; Rhea K; Chaput JC
    J Am Chem Soc; 2020 Apr; 142(17):7721-7724. PubMed ID: 32298104
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis and enzymatic incorporation of α-L-threofuranosyl adenine triphosphate (tATP).
    Zhang S; Chaput JC
    Bioorg Med Chem Lett; 2013 Mar; 23(5):1447-9. PubMed ID: 23352269
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.