BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 38903761)

  • 1. Evaluation of normalization methods for predicting quantitative phenotypes in metagenomic data analysis.
    Wang B; Luan Y
    Front Genet; 2024; 15():1369628. PubMed ID: 38903761
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of the effectiveness of different normalization methods for metagenomic cross-study phenotype prediction under heterogeneity.
    Wang B; Sun F; Luan Y
    Sci Rep; 2024 Mar; 14(1):7024. PubMed ID: 38528097
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Batch normalization followed by merging is powerful for phenotype prediction integrating multiple heterogeneous studies.
    Gao Y; Sun F
    PLoS Comput Biol; 2023 Oct; 19(10):e1010608. PubMed ID: 37844077
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Erratum: High-Throughput Identification of Resistance to Pseudomonas syringae pv. Tomato in Tomato using Seedling Flood Assay.
    J Vis Exp; 2023 Oct; (200):. PubMed ID: 37851522
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Batch effect correction for genome-wide methylation data with Illumina Infinium platform.
    Sun Z; Chai HS; Wu Y; White WM; Donkena KV; Klein CJ; Garovic VD; Therneau TM; Kocher JP
    BMC Med Genomics; 2011 Dec; 4():84. PubMed ID: 22171553
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deep learning versus parametric and ensemble methods for genomic prediction of complex phenotypes.
    Abdollahi-Arpanahi R; Gianola D; Peñagaricano F
    Genet Sel Evol; 2020 Feb; 52(1):12. PubMed ID: 32093611
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Systematic evaluation of supervised machine learning for sample origin prediction using metagenomic sequencing data.
    Chen JC; Tyler AD
    Biol Direct; 2020 Dec; 15(1):29. PubMed ID: 33302990
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Benchmark of Data Processing Methods and Machine Learning Models for Gut Microbiome-Based Diagnosis of Inflammatory Bowel Disease.
    Kubinski R; Djamen-Kepaou JY; Zhanabaev T; Hernandez-Garcia A; Bauer S; Hildebrand F; Korcsmaros T; Karam S; Jantchou P; Kafi K; Martin RD
    Front Genet; 2022; 13():784397. PubMed ID: 35251123
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A machine learning framework to determine geolocations from metagenomic profiling.
    Huang L; Xu C; Yang W; Yu R
    Biol Direct; 2020 Nov; 15(1):27. PubMed ID: 33225966
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental evaluation of a recursive model identification technique for type 1 diabetes.
    Finan DA; Doyle FJ; Palerm CC; Bevier WC; Zisser HC; Jovanovic L; Seborg DE
    J Diabetes Sci Technol; 2009 Sep; 3(5):1192-202. PubMed ID: 20144436
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluating the performance of machine learning methods and variable selection methods for predicting difficult-to-measure traits in Holstein dairy cattle using milk infrared spectral data.
    Mota LFM; Pegolo S; Baba T; Peñagaricano F; Morota G; Bittante G; Cecchinato A
    J Dairy Sci; 2021 Jul; 104(7):8107-8121. PubMed ID: 33865589
    [TBL] [Abstract][Full Text] [Related]  

  • 12. GNPI: Graph normalization to integrate phylogenetic information for metagenomic host phenotype prediction.
    Li B; Zhong D; Qiao J; Jiang X
    Methods; 2022 Sep; 205():11-17. PubMed ID: 35636652
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting Readmission Charges Billed by Hospitals: Machine Learning Approach.
    Gopukumar D; Ghoshal A; Zhao H
    JMIR Med Inform; 2022 Aug; 10(8):e37578. PubMed ID: 35896038
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metagenomic predictions: from microbiome to complex health and environmental phenotypes in humans and cattle.
    Ross EM; Moate PJ; Marett LC; Cocks BG; Hayes BJ
    PLoS One; 2013; 8(9):e73056. PubMed ID: 24023808
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Machine Learning Meta-analysis of Large Metagenomic Datasets: Tools and Biological Insights.
    Pasolli E; Truong DT; Malik F; Waldron L; Segata N
    PLoS Comput Biol; 2016 Jul; 12(7):e1004977. PubMed ID: 27400279
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas.
    Crider K; Williams J; Qi YP; Gutman J; Yeung L; Mai C; Finkelstain J; Mehta S; Pons-Duran C; Menéndez C; Moraleda C; Rogers L; Daniels K; Green P
    Cochrane Database Syst Rev; 2022 Feb; 2(2022):. PubMed ID: 36321557
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis and correction of compositional bias in sparse sequencing count data.
    Kumar MS; Slud EV; Okrah K; Hicks SC; Hannenhalli S; Corrada Bravo H
    BMC Genomics; 2018 Nov; 19(1):799. PubMed ID: 30400812
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gene-based microbiome representation enhances host phenotype classification.
    Deschênes T; Tohoundjona FWE; Plante PL; Di Marzo V; Raymond F
    mSystems; 2023 Aug; 8(4):e0053123. PubMed ID: 37404032
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comparison of RNA-Seq data preprocessing pipelines for transcriptomic predictions across independent studies.
    Van R; Alvarez D; Mize T; Gannavarapu S; Chintham Reddy L; Nasoz F; Han MV
    BMC Bioinformatics; 2024 May; 25(1):181. PubMed ID: 38720247
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MegaD: Deep Learning for Rapid and Accurate Disease Status Prediction of Metagenomic Samples.
    Mreyoud Y; Song M; Lim J; Ahn TH
    Life (Basel); 2022 Apr; 12(5):. PubMed ID: 35629336
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.