These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 38903904)
1. Cross-Sectional Melt Pool Geometry of Laser Scanned Tracks and Pads on Nickel Alloy 718 for the 2022 Additive Manufacturing Benchmark Challenges. Weaver JS; Deisenroth D; Mekhontsev S; Lane BM; Levine LE; Yeung H Integr Mater Manuf Innov; 2024; 13(2):. PubMed ID: 38903904 [TBL] [Abstract][Full Text] [Related]
2. Assessing the influence of non-uniform gas speed on the melt pool depth in laser powder bed fusion additive manufacturing. Weaver JS; Schlenoff A; Deisenroth D; Moylan S Rapid Prototyp J; 2023 Aug; 29(8):. PubMed ID: 38486812 [TBL] [Abstract][Full Text] [Related]
3. Topographic Measurement of Individual Laser Tracks in Alloy 625 Bare Plates. Ricker RE; Heigel JC; Lane BM; Zhirnov I; Levine LE Integr Mater Manuf Innov; 2019; 8(4):. PubMed ID: 33029475 [TBL] [Abstract][Full Text] [Related]
4. Measurements of melt pool geometry and cooling rates of individual laser traces on IN625 bare plates. Lane B; Heigel J; Ricker R; Zhirnov I; Khromschenko V; Weaver J; Phan T; Stoudt M; Mekhontsev S; Levine L Integr Mater Manuf Innov; 2020; 9(1):. PubMed ID: 34123701 [TBL] [Abstract][Full Text] [Related]
5. Laser spot size and scaling laws for laser beam additive manufacturing. Weaver JS; Heigel JC; Lane BM J Mater Process Technol; 2022 Jan; 73():. PubMed ID: 36733901 [TBL] [Abstract][Full Text] [Related]
6. Understanding Melt Pool Behavior of 316L Stainless Steel in Laser Powder Bed Fusion Additive Manufacturing. Zhang Z; Zhang T; Sun C; Karna S; Yuan L Micromachines (Basel); 2024 Jan; 15(2):. PubMed ID: 38398900 [TBL] [Abstract][Full Text] [Related]
7. A residual heat compensation based scan strategy for powder bed fusion additive manufacturing. Yeung H; Lane B Manuf Lett; 2020; 25():. PubMed ID: 34123726 [TBL] [Abstract][Full Text] [Related]
8. Accurate determination of laser spot position during laser powder bed fusion process thermography. Zhirnov I; Mekhontsev S; Lane B; Grantham S; Bura N Manuf Lett; 2020; 23():. PubMed ID: 32855904 [TBL] [Abstract][Full Text] [Related]
9. Characterizing the effects of laser control in laser powder bed fusion on near-surface pore formation via combined analysis of in-situ melt pool monitoring and X-ray computed tomography. Kim FH; Yeung H; Garboczi EJ Addit Manuf; 2021 Dec; 48(A):. PubMed ID: 36733468 [TBL] [Abstract][Full Text] [Related]
10. Numerical Simulation in the Melt Pool Evolution of Laser Powder Bed Fusion Process for Ti6Al4V. Xu Y; Zhang D; Deng J; Wu X; Li L; Xie Y; Poprawe R; Schleifenbaum JH; Ziegler S Materials (Basel); 2022 Oct; 15(21):. PubMed ID: 36363176 [TBL] [Abstract][Full Text] [Related]
11. Transient Laser Energy Absorption, Co-axial Melt Pool Monitoring, and Relationship to Melt Pool Morphology. Lane B; Zhirnov I; Mekhontsev S; Grantham S; Ricker R; Rauniyar S; Chou K Addit Manuf; 2020 Dec; 36():. PubMed ID: 34141601 [TBL] [Abstract][Full Text] [Related]
12. Toward determining melt pool quality metrics via coaxial monitoring in laser powder bed fusion. Fisher BA; Lane B; Yeung H; Beuth J Manuf Lett; 2018 Jan; 15(Pt B):119-121. PubMed ID: 29888171 [TBL] [Abstract][Full Text] [Related]
13. Part geometry and conduction-based laser power control for powder bed fusion additive manufacturing. Yeung H; Lane B; Fox J Addit Manuf; 2019 Dec; 30():. PubMed ID: 34141600 [TBL] [Abstract][Full Text] [Related]
14. Data analytics approach for melt-pool geometries in metal additive manufacturing. Lee S; Peng J; Shin D; Choi YS Sci Technol Adv Mater; 2019; 20(1):972-978. PubMed ID: 31692926 [TBL] [Abstract][Full Text] [Related]
15. Melt Pool Changes Characterization in Laser-Processed H11 Hot Work Tool Steel Using Point-by-Point Scanning Mode towards LPBF Process Optimization. Fryzowicz K; Bardo R; Dziurka R; Kawałko J; Cios G; Stwora A; Bała P Materials (Basel); 2024 Sep; 17(18):. PubMed ID: 39336372 [TBL] [Abstract][Full Text] [Related]
16. Investigation of SLM Process in Terms of Temperature Distribution and Melting Pool Size: Modeling and Experimental Approaches. Ansari MJ; Nguyen DS; Park HS Materials (Basel); 2019 Apr; 12(8):. PubMed ID: 31003432 [TBL] [Abstract][Full Text] [Related]
17. 3D Modeling of the Solidification Structure Evolution and of the Inter Layer/Track Voids Formation in Metallic Alloys Processed by Powder Bed Fusion Additive Manufacturing. Nastac L Materials (Basel); 2022 Dec; 15(24):. PubMed ID: 36556692 [TBL] [Abstract][Full Text] [Related]
18. Mesoscopic Simulation of Core-Shell Composite Powder Materials by Selective Laser Melting. Bao T; Tan Y; Xu Y Materials (Basel); 2023 Nov; 16(21):. PubMed ID: 37959603 [TBL] [Abstract][Full Text] [Related]
19. Study on the Effect of Inter-Layer Cooling Time on Porosity and Melt Pool in Inconel 718 Components Processed by Laser Powder Bed Fusion. Baldi N; Giorgetti A; Palladino M; Giovannetti I; Arcidiacono G; Citti P Materials (Basel); 2023 May; 16(11):. PubMed ID: 37297054 [TBL] [Abstract][Full Text] [Related]
20. Full-Field Mapping and Flow Quantification of Melt Pool Dynamics in Laser Powder Bed Fusion of SS316L. Ur Rehman A; Pitir F; Salamci MU Materials (Basel); 2021 Oct; 14(21):. PubMed ID: 34771790 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]