These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 38904184)

  • 1. Extremely persistent dense active fluids.
    Szamel G; Flenner E
    Soft Matter; 2024 Jul; 20(26):5237-5244. PubMed ID: 38904184
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nonequilibrium mode-coupling theory for dense active systems of self-propelled particles.
    Nandi SK; Gov NS
    Soft Matter; 2017 Oct; 13(41):7609-7616. PubMed ID: 29028064
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Extreme active matter at high densities.
    Mandal R; Bhuyan PJ; Chaudhuri P; Dasgupta C; Rao M
    Nat Commun; 2020 May; 11(1):2581. PubMed ID: 32444608
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mode coupling theory for nonequilibrium glassy dynamics of thermal self-propelled particles.
    Feng M; Hou Z
    Soft Matter; 2017 Jun; 13(25):4464-4481. PubMed ID: 28580481
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rheological similarities between dense self-propelled and sheared particulate systems.
    Mo R; Liao Q; Xu N
    Soft Matter; 2020 Apr; 16(15):3642-3648. PubMed ID: 32219271
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intermittent relaxation and avalanches in extremely persistent active matter.
    Keta YE; Mandal R; Sollich P; Jack RL; Berthier L
    Soft Matter; 2023 May; 19(21):3871-3883. PubMed ID: 37195636
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Granular materials flow like complex fluids.
    Kou B; Cao Y; Li J; Xia C; Li Z; Dong H; Zhang A; Zhang J; Kob W; Wang Y
    Nature; 2017 Nov; 551(7680):360-363. PubMed ID: 29088704
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Disordered Collective Motion in Dense Assemblies of Persistent Particles.
    Keta YE; Jack RL; Berthier L
    Phys Rev Lett; 2022 Jul; 129(4):048002. PubMed ID: 35939008
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The nonequilibrium glassy dynamics of self-propelled particles.
    Flenner E; Szamel G; Berthier L
    Soft Matter; 2016 Sep; 12(34):7136-49. PubMed ID: 27499055
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Measurements of the yield stress in frictionless granular systems.
    Xu N; O'Hern CS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jun; 73(6 Pt 1):061303. PubMed ID: 16906818
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Viscoelastic shear stress relaxation in two-dimensional glass-forming liquids.
    Flenner E; Szamel G
    Proc Natl Acad Sci U S A; 2019 Feb; 116(6):2015-2020. PubMed ID: 30670658
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the Gaussian approximation in colloidal hard sphere fluids.
    Thorneywork AL; Aarts DG; Horbach J; Dullens RP
    Soft Matter; 2016 May; 12(18):4129-34. PubMed ID: 27064930
    [TBL] [Abstract][Full Text] [Related]  

  • 14. How to study a persistent active glassy system.
    Mandal R; Sollich P
    J Phys Condens Matter; 2021 Apr; 33(18):. PubMed ID: 33730708
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural relaxation in dense liquids composed of anisotropic particles.
    Shen T; Schreck C; Chakraborty B; Freed DE; O'Hern CS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Oct; 86(4 Pt 1):041303. PubMed ID: 23214576
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Correlated two-particle diffusion in dense colloidal suspensions at early times: Theory and comparison to experiment.
    Dell ZE; Tsang B; Jiang L; Granick S; Schweizer KS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Nov; 92(5):052304. PubMed ID: 26651692
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hysteretic dynamics of active particles in a periodic orienting field.
    Romensky M; Scholz D; Lobaskin V
    J R Soc Interface; 2015 Jul; 12(108):20150015. PubMed ID: 26040594
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Active glassy dynamics is unaffected by the microscopic details of self-propulsion.
    Debets VE; Janssen LMC
    J Chem Phys; 2022 Dec; 157(22):224902. PubMed ID: 36546821
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Correlated escape of active particles across a potential barrier.
    Caprini L; Cecconi F; Marini Bettolo Marconi U
    J Chem Phys; 2021 Dec; 155(23):234902. PubMed ID: 34937362
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Marginally compact hyperbranched polymer trees.
    Dolgushev M; Wittmer JP; Johner A; Benzerara O; Meyer H; Baschnagel J
    Soft Matter; 2017 Mar; 13(13):2499-2512. PubMed ID: 28304066
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.