BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 38904198)

  • 1. TGF‑β/Smad signaling in chronic kidney disease: Exploring post‑translational regulatory perspectives (Review).
    Li J; Zou Y; Kantapan J; Su H; Wang L; Dechsupa N
    Mol Med Rep; 2024 Aug; 30(2):. PubMed ID: 38904198
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Central role of dysregulation of TGF-β/Smad in CKD progression and potential targets of its treatment.
    Chen L; Yang T; Lu DW; Zhao H; Feng YL; Chen H; Chen DQ; Vaziri ND; Zhao YY
    Biomed Pharmacother; 2018 May; 101():670-681. PubMed ID: 29518614
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acupuncture attenuates renal interstitial fibrosis via the TGF‑β/Smad pathway.
    Zuo Z; Huang P; Jiang Y; Zhang Y; Zhu M
    Mol Med Rep; 2019 Sep; 20(3):2267-2275. PubMed ID: 31322212
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Role of Ubiquitination to Determine Non-Smad Signaling Responses.
    Gudey SK; Landström M
    Methods Mol Biol; 2016; 1344():355-63. PubMed ID: 26520137
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of Smad signaling in kidney disease.
    Zhang Y; Wang S; Liu S; Li C; Wang J
    Int Urol Nephrol; 2015 Dec; 47(12):1965-75. PubMed ID: 26433882
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nur77 ameliorates age-related renal tubulointerstitial fibrosis by suppressing the TGF-β/Smads signaling pathway.
    Ma G; Chen F; Liu Y; Zheng L; Jiang X; Tian H; Wang X; Song X; Yu Y; Wang D
    FASEB J; 2022 Feb; 36(2):e22124. PubMed ID: 34972249
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transforming growth factor β (TGFβ) and related molecules in chronic kidney disease (CKD).
    Huynh P; Chai Z
    Clin Sci (Lond); 2019 Jan; 133(2):287-313. PubMed ID: 30683713
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of Smads in TGFβ signaling.
    Heldin CH; Moustakas A
    Cell Tissue Res; 2012 Jan; 347(1):21-36. PubMed ID: 21643690
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [TGFbeta, activin and SMAD signalling in thyroid cancer].
    Kimura ET; Matsuo SE; Ricarte-Filho JC
    Arq Bras Endocrinol Metabol; 2007 Jul; 51(5):683-9. PubMed ID: 17891231
    [TBL] [Abstract][Full Text] [Related]  

  • 10. E3 Ubiquitin Ligases: Key Regulators of TGFβ Signaling in Cancer Progression.
    Sinha A; Iyengar PV; Ten Dijke P
    Int J Mol Sci; 2021 Jan; 22(2):. PubMed ID: 33418880
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lindera aggregata intervents adenine-induced chronic kidney disease by mediating metabolism and TGF-β/Smad signaling pathway.
    Cai H; Wang J; Luo Y; Wang F; He G; Zhou G; Peng X
    Biomed Pharmacother; 2021 Feb; 134():111098. PubMed ID: 33341058
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulating the stability of TGFbeta receptors and Smads.
    Lönn P; Morén A; Raja E; Dahl M; Moustakas A
    Cell Res; 2009 Jan; 19(1):21-35. PubMed ID: 19030025
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of TGF-β Family Signaling by Inhibitory Smads.
    Miyazawa K; Miyazono K
    Cold Spring Harb Perspect Biol; 2017 Mar; 9(3):. PubMed ID: 27920040
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tanshinone IIA attenuates renal fibrosis and inflammation via altering expression of TGF-β/Smad and NF-κB signaling pathway in 5/6 nephrectomized rats.
    Wang DT; Huang RH; Cheng X; Zhang ZH; Yang YJ; Lin X
    Int Immunopharmacol; 2015 May; 26(1):4-12. PubMed ID: 25744602
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transforming growth factor-beta-induced alpha-smooth muscle cell actin expression in renal proximal tubular cells is regulated by p38beta mitogen-activated protein kinase, extracellular signal-regulated protein kinase1,2 and the Smad signalling during epithelial-myofibroblast transdifferentiation.
    Sebe A; Leivonen SK; Fintha A; Masszi A; Rosivall L; Kähäri VM; Mucsi I
    Nephrol Dial Transplant; 2008 May; 23(5):1537-45. PubMed ID: 18192325
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selective inhibition of activin receptor-like kinase 5 signaling blocks profibrotic transforming growth factor beta responses in skin fibroblasts.
    Mori Y; Ishida W; Bhattacharyya S; Li Y; Platanias LC; Varga J
    Arthritis Rheum; 2004 Dec; 50(12):4008-21. PubMed ID: 15593186
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Distinct polarity cues direct Taz/Yap and TGFβ receptor localization to differentially control TGFβ-induced Smad signaling.
    Narimatsu M; Samavarchi-Tehrani P; Varelas X; Wrana JL
    Dev Cell; 2015 Mar; 32(5):652-6. PubMed ID: 25758863
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rapamycin induces the TGFbeta1/Smad signaling cascade in renal mesangial cells upstream of mTOR.
    Osman B; Doller A; Akool el-S; Holdener M; Hintermann E; Pfeilschifter J; Eberhardt W
    Cell Signal; 2009 Dec; 21(12):1806-17. PubMed ID: 19666112
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SETD2 deficiency promotes renal fibrosis through the TGF-β/Smad signalling pathway in the absence of VHL.
    Liu C; Ni L; Li X; Rao H; Feng W; Zhu Y; Zhang W; Ma C; Xu Y; Gui L; Wang Z; Aji R; Xu J; Gao WQ; Li L
    Clin Transl Med; 2023 Nov; 13(11):e1468. PubMed ID: 37933774
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pro-metastasis function of TGFbeta mediated by the Smad pathway.
    Kang Y
    J Cell Biochem; 2006 Aug; 98(6):1380-90. PubMed ID: 16598746
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.