BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 38904218)

  • 1. Exploring the Application of SiteMap and Site Finder for Focused Cryptic Pocket Identification.
    Ge Y; Pande V; Seierstad MJ; Damm-Ganamet KL
    J Phys Chem B; 2024 Jul; 128(26):6233-6245. PubMed ID: 38904218
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Small Glycols Discover Cryptic Pockets on Proteins for Fragment-Based Approaches.
    Bansia H; Mahanta P; Yennawar NH; Ramakumar S
    J Chem Inf Model; 2021 Mar; 61(3):1322-1333. PubMed ID: 33570386
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cryptic Pockets Repository through Pocket Dynamics Tracking and Metadynamics on Essential Dynamics Space: Applications to Mcl-1.
    Benabderrahmane M; Bureau R; Voisin-Chiret AS; Santos JSO
    J Chem Inf Model; 2021 Nov; 61(11):5581-5588. PubMed ID: 34748701
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure-Based Analysis of Cryptic-Site Opening.
    Sun Z; Wakefield AE; Kolossvary I; Beglov D; Vajda S
    Structure; 2020 Feb; 28(2):223-235.e2. PubMed ID: 31810712
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Perturbation Approaches for Exploring Protein Binding Site Flexibility to Predict Transient Binding Pockets.
    Kokh DB; Czodrowski P; Rippmann F; Wade RC
    J Chem Theory Comput; 2016 Aug; 12(8):4100-13. PubMed ID: 27399277
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting locations of cryptic pockets from single protein structures using the PocketMiner graph neural network.
    Meller A; Ward M; Borowsky J; Kshirsagar M; Lotthammer JM; Oviedo F; Ferres JL; Bowman GR
    Nat Commun; 2023 Mar; 14(1):1177. PubMed ID: 36859488
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cosolvent-Enhanced Sampling and Unbiased Identification of Cryptic Pockets Suitable for Structure-Based Drug Design.
    Schmidt D; Boehm M; McClendon CL; Torella R; Gohlke H
    J Chem Theory Comput; 2019 May; 15(5):3331-3343. PubMed ID: 30998331
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CryptoSite: Expanding the Druggable Proteome by Characterization and Prediction of Cryptic Binding Sites.
    Cimermancic P; Weinkam P; Rettenmaier TJ; Bichmann L; Keedy DA; Woldeyes RA; Schneidman-Duhovny D; Demerdash ON; Mitchell JC; Wells JA; Fraser JS; Sali A
    J Mol Biol; 2016 Feb; 428(4):709-719. PubMed ID: 26854760
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Understanding Cryptic Pocket Formation in Protein Targets by Enhanced Sampling Simulations.
    Oleinikovas V; Saladino G; Cossins BP; Gervasio FL
    J Am Chem Soc; 2016 Nov; 138(43):14257-14263. PubMed ID: 27726386
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SWISH-X, an Expanded Approach to Detect Cryptic Pockets in Proteins and at Protein-Protein Interfaces.
    Borsatto A; Gianquinto E; Rizzi V; Gervasio FL
    J Chem Theory Comput; 2024 Apr; 20(8):3335-3348. PubMed ID: 38563746
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accelerated Ligand-Mapping Molecular Dynamics Simulations for the Detection of Recalcitrant Cryptic Pockets and Occluded Binding Sites.
    Tze-Yang Ng J; Tan YS
    J Chem Theory Comput; 2022 Mar; 18(3):1969-1981. PubMed ID: 35175753
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Divide and Conquer. Pocket-Opening Mixed-Solvent Simulations in the Perspective of Docking Virtual Screening Applications for Drug Discovery.
    Sabanés Zariquiey F; Jacoby E; Vos A; van Vlijmen HWT; Tresadern G; Harvey J
    J Chem Inf Model; 2022 Feb; 62(3):533-543. PubMed ID: 35041430
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploring Conformational Landscapes and Cryptic Binding Pockets in Distinct Functional States of the SARS-CoV-2 Omicron BA.1 and BA.2 Trimers: Mutation-Induced Modulation of Protein Dynamics and Network-Guided Prediction of Variant-Specific Allosteric Binding Sites.
    Verkhivker G; Alshahrani M; Gupta G
    Viruses; 2023 Sep; 15(10):. PubMed ID: 37896786
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploring the structural origins of cryptic sites on proteins.
    Beglov D; Hall DR; Wakefield AE; Luo L; Allen KN; Kozakov D; Whitty A; Vajda S
    Proc Natl Acad Sci U S A; 2018 Apr; 115(15):E3416-E3425. PubMed ID: 29581267
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting cryptic ligand binding sites based on normal modes guided conformational sampling.
    Zheng W
    Proteins; 2021 Apr; 89(4):416-426. PubMed ID: 33244830
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deciphering Cryptic Binding Sites on Proteins by Mixed-Solvent Molecular Dynamics.
    Kimura SR; Hu HP; Ruvinsky AM; Sherman W; Favia AD
    J Chem Inf Model; 2017 Jun; 57(6):1388-1401. PubMed ID: 28537745
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibition of striatal-enriched protein tyrosine phosphatase by targeting computationally revealed cryptic pockets.
    Hou X; Sun JP; Ge L; Liang X; Li K; Zhang Y; Fang H
    Eur J Med Chem; 2020 Mar; 190():112131. PubMed ID: 32078861
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Opening of a cryptic pocket in β-lactamase increases penicillinase activity.
    Knoverek CR; Mallimadugula UL; Singh S; Rennella E; Frederick TE; Yuwen T; Raavicharla S; Kay LE; Bowman GR
    Proc Natl Acad Sci U S A; 2021 Nov; 118(47):. PubMed ID: 34799442
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Benzene-Mapping Approach for Uncovering Cryptic Pockets in Membrane-Bound Proteins.
    Zuzic L; Marzinek JK; Warwicker J; Bond PJ
    J Chem Theory Comput; 2020 Sep; 16(9):5948-5959. PubMed ID: 32786908
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accelerating Cryptic Pocket Discovery Using AlphaFold.
    Meller A; Bhakat S; Solieva S; Bowman GR
    J Chem Theory Comput; 2023 Jul; 19(14):4355-4363. PubMed ID: 36948209
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.