BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 38904688)

  • 1. Listen to what the animals say: a systematic review and meta-analysis of sterol 14-demethylase inhibitor efficacy for in vivo models of Trypanosoma cruzi infection.
    Bisio MMC; Jurado Medina LS; García-Bournissen F; Gulin JEN
    Parasitol Res; 2024 Jun; 123(6):248. PubMed ID: 38904688
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vitro and in vivo studies of the antiparasitic activity of sterol 14α-demethylase (CYP51) inhibitor VNI against drug-resistant strains of Trypanosoma cruzi.
    Soeiro Mde N; de Souza EM; da Silva CF; Batista Dda G; Batista MM; Pavão BP; Araújo JS; Aiub CA; da Silva PB; Lionel J; Britto C; Kim K; Sulikowski G; Hargrove TY; Waterman MR; Lepesheva GI
    Antimicrob Agents Chemother; 2013 Sep; 57(9):4151-63. PubMed ID: 23774435
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Antitrypanosomal Treatment with Benznidazole Is Superior to Posaconazole Regimens in Mouse Models of Chagas Disease.
    Khare S; Liu X; Stinson M; Rivera I; Groessl T; Tuntland T; Yeh V; Wen B; Molteni V; Glynne R; Supek F
    Antimicrob Agents Chemother; 2015 Oct; 59(10):6385-94. PubMed ID: 26239982
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Successful Aspects of the Coadministration of Sterol 14α-Demethylase Inhibitor VFV and Benznidazole in Experimental Mouse Models of Chagas Disease Caused by the Drug-Resistant Strain of Trypanosoma cruzi.
    Guedes-da-Silva FH; Batista DDGJ; Da Silva CF; Pavão BP; Batista MM; Moreira OC; Souza LRQ; Britto C; Rachakonda G; Villalta F; Lepesheva GI; Soeiro MNC
    ACS Infect Dis; 2019 Mar; 5(3):365-371. PubMed ID: 30625275
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Complexes of Trypanosoma cruzi sterol 14α-demethylase (CYP51) with two pyridine-based drug candidates for Chagas disease: structural basis for pathogen selectivity.
    Hargrove TY; Wawrzak Z; Alexander PW; Chaplin JH; Keenan M; Charman SA; Perez CJ; Waterman MR; Chatelain E; Lepesheva GI
    J Biol Chem; 2013 Nov; 288(44):31602-15. PubMed ID: 24047900
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 4-aminopyridyl-based lead compounds targeting CYP51 prevent spontaneous parasite relapse in a chronic model and improve cardiac pathology in an acute model of Trypanosoma cruzi infection.
    Calvet CM; Choi JY; Thomas D; Suzuki B; Hirata K; Lostracco-Johnson S; de Mesquita LB; Nogueira A; Meuser-Batista M; Silva TA; Siqueira-Neto JL; Roush WR; de Souza Pereira MC; McKerrow JH; Podust LM
    PLoS Negl Trop Dis; 2017 Dec; 11(12):e0006132. PubMed ID: 29281643
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Antitrypanosomal Activity of Sterol 14α-Demethylase (CYP51) Inhibitors VNI and VFV in the Swiss Mouse Models of Chagas Disease Induced by the Trypanosoma cruzi Y Strain.
    Guedes-da-Silva FH; Batista DG; Da Silva CF; De Araújo JS; Pavão BP; Simões-Silva MR; Batista MM; Demarque KC; Moreira OC; Britto C; Lepesheva GI; Soeiro MN
    Antimicrob Agents Chemother; 2017 Apr; 61(4):. PubMed ID: 28167559
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of a Fluorescence-based Trypanosoma cruzi CYP51 Inhibition Assay for Effective Compound Triaging in Drug Discovery Programmes for Chagas Disease.
    Riley J; Brand S; Voice M; Caballero I; Calvo D; Read KD
    PLoS Negl Trop Dis; 2015 Sep; 9(9):e0004014. PubMed ID: 26394211
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel structural CYP51 mutation in Trypanosoma cruzi associated with multidrug resistance to CYP51 inhibitors and reduced infectivity.
    Franco CH; Warhurst DC; Bhattacharyya T; Au HYA; Le H; Giardini MA; Pascoalino BS; Torrecilhas AC; Romera LMD; Madeira RP; Schenkman S; Freitas-Junior LH; Chatelain E; Miles MA; Moraes CB
    Int J Parasitol Drugs Drug Resist; 2020 Aug; 13():107-120. PubMed ID: 32688218
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nitroheterocyclic compounds are more efficacious than CYP51 inhibitors against Trypanosoma cruzi: implications for Chagas disease drug discovery and development.
    Moraes CB; Giardini MA; Kim H; Franco CH; Araujo-Junior AM; Schenkman S; Chatelain E; Freitas-Junior LH
    Sci Rep; 2014 Apr; 4():4703. PubMed ID: 24736467
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Higher oral efficacy of ravuconazole in self-nanoemulsifying systems in shorter treatment in experimental chagas disease.
    Spósito PÁ; Mazzeti AL; de Castro KCMP; Mendes PF; Urbina JA; Bahia MT; Mosqueira VCF
    Exp Parasitol; 2021 Sep; 228():108142. PubMed ID: 34375652
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dialkylimidazole inhibitors of Trypanosoma cruzi sterol 14α-demethylase as anti-Chagas disease agents.
    Suryadevara PK; Racherla KK; Olepu S; Norcross NR; Tatipaka HB; Arif JA; Planer JD; Lepesheva GI; Verlinde CL; Buckner FS; Gelb MH
    Bioorg Med Chem Lett; 2013 Dec; 23(23):6492-9. PubMed ID: 24120539
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Targeting Trypanosoma cruzi sterol 14α-demethylase (CYP51).
    Lepesheva GI; Villalta F; Waterman MR
    Adv Parasitol; 2011; 75():65-87. PubMed ID: 21820552
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Different Therapeutic Outcomes of Benznidazole and VNI Treatments in Different Genders in Mouse Experimental Models of Trypanosoma cruzi Infection.
    Guedes-da-Silva FH; Batista DG; da Silva CF; Meuser MB; Simões-Silva MR; de Araújo JS; Ferreira CG; Moreira OC; Britto C; Lepesheva GI; Soeiro Mde N
    Antimicrob Agents Chemother; 2015 Dec; 59(12):7564-70. PubMed ID: 26416857
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Anti-Trypanosoma cruzi activity of posaconazole in a murine model of acute Chagas' disease is less dependent on gamma interferon than that of benznidazole.
    Ferraz ML; Gazzinelli RT; Alves RO; Urbina JA; Romanha AJ
    Antimicrob Agents Chemother; 2007 Apr; 51(4):1359-64. PubMed ID: 17220408
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Clinical Candidate VT-1161's Antiparasitic Effect In Vitro, Activity in a Murine Model of Chagas Disease, and Structural Characterization in Complex with the Target Enzyme CYP51 from Trypanosoma cruzi.
    Hoekstra WJ; Hargrove TY; Wawrzak Z; da Gama Jaen Batista D; da Silva CF; Nefertiti AS; Rachakonda G; Schotzinger RJ; Villalta F; Soeiro Mde N; Lepesheva GI
    Antimicrob Agents Chemother; 2016 Feb; 60(2):1058-66. PubMed ID: 26643331
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pharmacological characterization, structural studies, and in vivo activities of anti-Chagas disease lead compounds derived from tipifarnib.
    Buckner FS; Bahia MT; Suryadevara PK; White KL; Shackleford DM; Chennamaneni NK; Hulverson MA; Laydbak JU; Chatelain E; Scandale I; Verlinde CL; Charman SA; Lepesheva GI; Gelb MH
    Antimicrob Agents Chemother; 2012 Sep; 56(9):4914-21. PubMed ID: 22777048
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Limited Ability of Posaconazole To Cure both Acute and Chronic Trypanosoma cruzi Infections Revealed by Highly Sensitive In Vivo Imaging.
    Francisco AF; Lewis MD; Jayawardhana S; Taylor MC; Chatelain E; Kelly JM
    Antimicrob Agents Chemother; 2015 Aug; 59(8):4653-61. PubMed ID: 26014936
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Absence of CD4+ T lymphocytes, CD8+ T lymphocytes, or B lymphocytes has different effects on the efficacy of posaconazole and benznidazole in treatment of experimental acute Trypanosoma cruzi infection.
    Ferraz ML; Gazzinelli RT; Alves RO; Urbina JA; Romanha AJ
    Antimicrob Agents Chemother; 2009 Jan; 53(1):174-9. PubMed ID: 19001113
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 4-Aminopyridyl-based CYP51 inhibitors as anti-Trypanosoma cruzi drug leads with improved pharmacokinetic profile and in vivo potency.
    Calvet CM; Vieira DF; Choi JY; Kellar D; Cameron MD; Siqueira-Neto JL; Gut J; Johnston JB; Lin L; Khan S; McKerrow JH; Roush WR; Podust LM
    J Med Chem; 2014 Aug; 57(16):6989-7005. PubMed ID: 25101801
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.