These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
111 related articles for article (PubMed ID: 38904876)
1. Characterization of phosphate modified red mud-based composite materials and study on heavy metal adsorption. Jin W; Yang Y; Jin J; Xu M; Zhang Z; Dong F; Shao M; Wan Y Environ Sci Pollut Res Int; 2024 Jul; 31(31):43687-43703. PubMed ID: 38904876 [TBL] [Abstract][Full Text] [Related]
2. A comprehensive investigation of the adsorption behaviour and mechanism of industrial waste sintering and bayer red muds for heavy metals. Guo L; Xu X; Wang Q; Yuan X; Niu C; Dong X; Liu X; Lei H; Zhou L Environ Geochem Health; 2024 Sep; 46(11):434. PubMed ID: 39316166 [TBL] [Abstract][Full Text] [Related]
3. Preparation and characterization of nanomuscovite by intercalation method for adsorption of heavy metals from polluted water. Rashed MN; Arifien AE; El-Dowy FA Environ Geochem Health; 2023 Jul; 45(7):5127-5144. PubMed ID: 37074498 [TBL] [Abstract][Full Text] [Related]
4. Phosphate removal from aqueous solutions using raw and activated red mud and fly ash. Li Y; Liu C; Luan Z; Peng X; Zhu C; Chen Z; Zhang Z; Fan J; Jia Z J Hazard Mater; 2006 Sep; 137(1):374-83. PubMed ID: 16621271 [TBL] [Abstract][Full Text] [Related]
5. Preparation of biosorbents from the Jatoba (Hymenaea courbaril) fruit shell for removal of Pb(II) and Cd(II) from aqueous solution. Souza IPAF; Cazetta AL; Pezoti O; Almeida VC Environ Monit Assess; 2017 Nov; 189(12):632. PubMed ID: 29130144 [TBL] [Abstract][Full Text] [Related]
6. Green preparation of a novel red mud@carbon composite and its application for adsorption of 2,4-dichlorophenoxyacetic acid from aqueous solution. Kazak O; Eker YR; Akin I; Bingol H; Tor A Environ Sci Pollut Res Int; 2017 Oct; 24(29):23057-23068. PubMed ID: 28825175 [TBL] [Abstract][Full Text] [Related]
7. Unlocking the potential of biochar: an iron-phosphorus-based composite modified adsorbent for adsorption of Pb(II) and Cd(II) in aqueous environments and response surface optimization of adsorption conditions. Li X; Chi Y; Ma F; Wang X; Du R; Wang Z; Dang X; Zhao C; Zhang Y; He S; Wang Y; Zhu T Environ Sci Pollut Res Int; 2024 May; 31(24):35688-35704. PubMed ID: 38740681 [TBL] [Abstract][Full Text] [Related]
8. Adsorptive removal of phosphate from aqueous solutions using different types of red mud. Guo T; Yang H; Liu Q; Gu H; Wang N; Yu W; Dai Y Water Sci Technol; 2018 May; 2017(2):570-577. PubMed ID: 29851410 [TBL] [Abstract][Full Text] [Related]
9. Equilibrium and kinetics of phosphorous adsorption onto bone charcoal from aqueous solution. Ghaneian MT; Ghanizadeh G; Alizadeh MT; Ehrampoush MH; Said FM Environ Technol; 2014; 35(5-8):882-90. PubMed ID: 24645470 [TBL] [Abstract][Full Text] [Related]
10. Sequestration of toxic Pb(II) ions by chemically treated rubber (Hevea brasiliensis) leaf powder. Kamal MH; Azira WM; Kasmawati M; Haslizaidi Z; Saime WN J Environ Sci (China); 2010; 22(2):248-56. PubMed ID: 20397414 [TBL] [Abstract][Full Text] [Related]
11. Efficient preparation of red mud-based geopolymer microspheres (RM@GMs) and adsorption of fluoride ions in wastewater. Yi M; Wang K; Wei H; Wei D; Wei X; Wei B; Shao L; Fujita T; Cui X J Hazard Mater; 2023 Jan; 442():130027. PubMed ID: 36162305 [TBL] [Abstract][Full Text] [Related]
12. Adsorption removal of phosphate from aqueous solution by active red mud. Liu CJ; Li YZ; Luan ZK; Chen ZY; Zhang ZG; Jia ZP J Environ Sci (China); 2007; 19(10):1166-70. PubMed ID: 18062412 [TBL] [Abstract][Full Text] [Related]
13. Ciprofloxacin Removal via Acid-Modified Red Mud: Optimizing the Process, Analyzing the Adsorption Features, and Exploring the Underlying Mechanism. Shi J; Wang W; Li Z; Shi Y Molecules; 2024 Jun; 29(12):. PubMed ID: 38930992 [TBL] [Abstract][Full Text] [Related]
14. Efficient removal of Pb(II) ions from aqueous solution by modified red mud. Lyu F; Niu S; Wang L; Liu R; Sun W; He D J Hazard Mater; 2021 Mar; 406():124678. PubMed ID: 33296756 [TBL] [Abstract][Full Text] [Related]
15. Adsorptive removal of Cd(II) and Pb(II) ions from aqueous solutions by using Turkish illitic clay. Ozdes D; Duran C; Senturk HB J Environ Manage; 2011 Dec; 92(12):3082-90. PubMed ID: 21856065 [TBL] [Abstract][Full Text] [Related]
16. Adsorption of basic dye from wastewater using raw and activated red mud. Coruh S; Geyikçi F; Ergun ON Environ Technol; 2011; 32(11-12):1183-93. PubMed ID: 21970160 [TBL] [Abstract][Full Text] [Related]
17. Heavy Metal Adsorption onto Kappaphycus sp. from Aqueous Solutions: The Use of Error Functions for Validation of Isotherm and Kinetics Models. Rahman MS; Sathasivam KV Biomed Res Int; 2015; 2015():126298. PubMed ID: 26295032 [TBL] [Abstract][Full Text] [Related]
18. Persimmon leaf bio-waste for adsorptive removal of heavy metals from aqueous solution. Lee SY; Choi HJ J Environ Manage; 2018 Mar; 209():382-392. PubMed ID: 29309963 [TBL] [Abstract][Full Text] [Related]
19. Pb(II) adsorption mechanism and capability from aqueous solution using red mud modified by chitosan. Luu TT; Dinh VP; Nguyen QH; Tran NQ; Nguyen DK; Ho TH; Nguyen VD; Tran DX; Kiet HAT Chemosphere; 2022 Jan; 287(Pt 3):132279. PubMed ID: 34563768 [TBL] [Abstract][Full Text] [Related]
20. Alginate modified graphitic carbon nitride composite hydrogels for efficient removal of Pb(II), Ni(II) and Cu(II) from water. Shen W; An QD; Xiao ZY; Zhai SR; Hao JA; Tong Y Int J Biol Macromol; 2020 Apr; 148():1298-1306. PubMed ID: 31739024 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]