These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 38905067)

  • 21. Accuracy of Monocular Two-Dimensional Pose Estimation Compared With a Reference Standard for Kinematic Multiview Analysis: Validation Study.
    Stamm O; Heimann-Steinert A
    JMIR Mhealth Uhealth; 2020 Dec; 8(12):e19608. PubMed ID: 33346739
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Lumped-parameter electromyogram-driven musculoskeletal hand model: A potential platform for real-time prosthesis control.
    Crouch DL; Huang H
    J Biomech; 2016 Dec; 49(16):3901-3907. PubMed ID: 27814972
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Validation of Novel Relative Orientation and Inertial Sensor-to-Segment Alignment Algorithms for Estimating 3D Hip Joint Angles.
    Adamowicz L; Gurchiek RD; Ferri J; Ursiny AT; Fiorentino N; McGinnis RS
    Sensors (Basel); 2019 Nov; 19(23):. PubMed ID: 31771263
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Inverse kinematics in cervical spine models: Effects of scaling and model degrees of freedom for extension and flexion movements.
    Barnamehei H; Zhou Y; Zhang X; Vasavada AN
    J Biomech; 2024 Oct; 175():112302. PubMed ID: 39241531
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comparison of lower limb and trunk kinematics between markerless and marker-based motion capture systems.
    Perrott MA; Pizzari T; Cook J; McClelland JA
    Gait Posture; 2017 Feb; 52():57-61. PubMed ID: 27871019
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Proximal-distal differences in movement smoothness reflect differences in biomechanics.
    Salmond LH; Davidson AD; Charles SK
    J Neurophysiol; 2017 Mar; 117(3):1239-1257. PubMed ID: 28003410
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The impact of an underactuated arm exoskeleton on wrist and elbow kinematics during Prioritized Activities of daily living.
    Casanova-Batlle E; de Zee M; Thøgersen M; Tillier Y; Andreasen Struijk LNS
    J Biomech; 2022 Jun; 139():111137. PubMed ID: 35594818
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Markerless motion capture can provide reliable 3D gait kinematics in the sagittal and frontal plane.
    Sandau M; Koblauch H; Moeslund TB; Aanæs H; Alkjær T; Simonsen EB
    Med Eng Phys; 2014 Sep; 36(9):1168-75. PubMed ID: 25085672
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The applicability of markerless motion capture for clinical gait analysis in children with cerebral palsy.
    Wishaupt K; Schallig W; van Dorst MH; Buizer AI; van der Krogt MM
    Sci Rep; 2024 May; 14(1):11910. PubMed ID: 38789587
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Markerless motion analysis to assess reaching-sideways in individuals with dyskinetic cerebral palsy: A validity study.
    Vanmechelen I; Van Wonterghem E; Aerts JM; Hallez H; Desloovere K; Van de Walle P; Buizer AI; Monbaliu E; Haberfehlner H
    J Biomech; 2024 Aug; 173():112233. PubMed ID: 39053292
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The impact of thigh and shank marker quantity on lower extremity kinematics using a constrained model.
    Slater AA; Hullfish TJ; Baxter JR
    BMC Musculoskelet Disord; 2018 Nov; 19(1):399. PubMed ID: 30424811
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The development and evaluation of a fully automated markerless motion capture workflow.
    Needham L; Evans M; Wade L; Cosker DP; McGuigan MP; Bilzon JL; Colyer SL
    J Biomech; 2022 Nov; 144():111338. PubMed ID: 36252308
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Concurrent Validity of Motion Parameters Measured With an RGB-D Camera-Based Markerless 3D Motion Tracking Method in Children and Young Adults.
    Hesse N; Baumgartner S; Gut A; Van Hedel HJA
    IEEE J Transl Eng Health Med; 2024; 12():580-588. PubMed ID: 39155921
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Kinematics of the Tennis Serve Using an Optoelectronic Motion Capture System: Are There Correlations between Joint Angles and Racket Velocity?
    Jacquier-Bret J; Gorce P
    Sensors (Basel); 2024 May; 24(11):. PubMed ID: 38894086
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The Biomechanics of Character Types in Javanese Dance.
    Hernandez-Barraza L; Yeow CH; Varela ME
    J Dance Med Sci; 2019 Sep; 23(3):104-111. PubMed ID: 31500692
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The efficacy of a video-based marker-less tracking system for gait analysis.
    Ong A; Harris IS; Hamill J
    Comput Methods Biomech Biomed Engin; 2017 Aug; 20(10):1089-1095. PubMed ID: 28569549
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Comparison of Motion Analysis Systems in Tracking Upper Body Movement of Myoelectric Bypass Prosthesis Users.
    Wang SL; Civillico G; Niswander W; Kontson KL
    Sensors (Basel); 2022 Apr; 22(8):. PubMed ID: 35458943
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Change the direction: 3D optimal control simulation by directly tracking marker and ground reaction force data.
    Nitschke M; Marzilger R; Leyendecker S; Eskofier BM; Koelewijn AD
    PeerJ; 2023; 11():e14852. PubMed ID: 36778146
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparison of Marker-Based and Stereo Radiography Knee Kinematics in Activities of Daily Living.
    Hume DR; Kefala V; Harris MD; Shelburne KB
    Ann Biomed Eng; 2018 Nov; 46(11):1806-1815. PubMed ID: 29948373
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Global sensitivity analysis of the joint kinematics during gait to the parameters of a lower limb multi-body model.
    El Habachi A; Moissenet F; Duprey S; Cheze L; Dumas R
    Med Biol Eng Comput; 2015 Jul; 53(7):655-67. PubMed ID: 25783762
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.