These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 38905196)

  • 1. 3D-Printed Demineralized Bone Matrix-Based Conductive Scaffolds Combined with Electrical Stimulation for Bone Tissue Engineering Applications.
    Dixon DT; Landree EN; Gomillion CT
    ACS Appl Bio Mater; 2024 Jul; 7(7):4366-4378. PubMed ID: 38905196
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Osteoregenerative Potential of 3D-Printed Poly
    Lawrence LM; Salary RR; Miller V; Valluri A; Denning KL; Case-Perry S; Abdelgaber K; Smith S; Claudio PP; Day JB
    Int J Mol Sci; 2023 Mar; 24(5):. PubMed ID: 36902373
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrical stimulation of adipose-derived mesenchymal stem cells in conductive scaffolds and the roles of voltage-gated ion channels.
    Zhang J; Li M; Kang ET; Neoh KG
    Acta Biomater; 2016 Mar; 32():46-56. PubMed ID: 26703122
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design and development of 3D printed shape memory triphasic polymer-ceramic bioactive scaffolds for bone tissue engineering.
    Ansari MAA; Makwana P; Dhimmar B; Vasita R; Jain PK; Nanda HS
    J Mater Chem B; 2024 Jul; 12(28):6886-6904. PubMed ID: 38912967
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 3D-Printed conductive polymeric scaffolds with direct current electrical stimulation for enhanced bone regeneration.
    Dixon DT; Gomillion CT
    J Biomed Mater Res B Appl Biomater; 2023 Jul; 111(7):1351-1364. PubMed ID: 36825765
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 3D-printed Mg-incorporated PCL-based scaffolds: A promising approach for bone healing.
    Dong Q; Zhang M; Zhou X; Shao Y; Li J; Wang L; Chu C; Xue F; Yao Q; Bai J
    Mater Sci Eng C Mater Biol Appl; 2021 Oct; 129():112372. PubMed ID: 34579891
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In-situ polymerized polypyrrole nanoparticles immobilized poly(ε-caprolactone) electrospun conductive scaffolds for bone tissue engineering.
    Maharjan B; Kaliannagounder VK; Jang SR; Awasthi GP; Bhattarai DP; Choukrani G; Park CH; Kim CS
    Mater Sci Eng C Mater Biol Appl; 2020 Sep; 114():111056. PubMed ID: 32994008
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-Dimensional Printing of Customized Scaffolds with Polycaprolactone-Silk Fibroin Composites and Integration of Gingival Tissue-Derived Stem Cells for Personalized Bone Therapy.
    Bojedla SSR; Yeleswarapu S; Alwala AM; Nikzad M; Masood SH; Riza S; Pati F
    ACS Appl Bio Mater; 2022 Sep; 5(9):4465-4479. PubMed ID: 35994743
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparation and characterization of PLA/PCL/HA composite scaffolds using indirect 3D printing for bone tissue engineering.
    Hassanajili S; Karami-Pour A; Oryan A; Talaei-Khozani T
    Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109960. PubMed ID: 31500051
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Extracellular matrix decorated polycaprolactone scaffolds for improved mesenchymal stem/stromal cell osteogenesis towards a patient-tailored bone tissue engineering approach.
    Silva JC; Carvalho MS; Udangawa RN; Moura CS; Cabral JMS; L da Silva C; Ferreira FC; Vashishth D; Linhardt RJ
    J Biomed Mater Res B Appl Biomater; 2020 Jul; 108(5):2153-2166. PubMed ID: 31916699
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 3D-printed polycaprolactone/tricalcium silicate scaffolds modified with decellularized bone ECM-oxidized alginate for bone tissue engineering.
    Menarbazari AA; Mansoori-Kermani A; Mashayekhan S; Soleimani A
    Int J Biol Macromol; 2024 Apr; 265(Pt 1):130827. PubMed ID: 38484823
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of new bone formation in critical-sized rat calvarial defect using 3D printed polycaprolactone/tragacanth gum-bioactive glass composite scaffolds.
    Janmohammadi M; Doostmohammadi N; Bahraminasab M; Nourbakhsh MS; Arab S; Asgharzade S; Ghanbari A; Satari A
    Int J Biol Macromol; 2024 Jun; 270(Pt 1):132361. PubMed ID: 38750857
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of 3D-Printed Poly-ɛ-Caprolactone Scaffolds Functionalized with Tricalcium Phosphate, Hydroxyapatite, Bio-Oss, or Decellularized Bone Matrix.
    Nyberg E; Rindone A; Dorafshar A; Grayson WL
    Tissue Eng Part A; 2017 Jun; 23(11-12):503-514. PubMed ID: 28027692
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigation of multiphasic 3D-bioplotted scaffolds for site-specific chondrogenic and osteogenic differentiation of human adipose-derived stem cells for osteochondral tissue engineering applications.
    Mellor LF; Nordberg RC; Huebner P; Mohiti-Asli M; Taylor MA; Efird W; Oxford JT; Spang JT; Shirwaiker RA; Loboa EG
    J Biomed Mater Res B Appl Biomater; 2020 Jul; 108(5):2017-2030. PubMed ID: 31880408
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coating 3D Printed Polycaprolactone Scaffolds with Nanocellulose Promotes Growth and Differentiation of Mesenchymal Stem Cells.
    Rashad A; Mohamed-Ahmed S; Ojansivu M; Berstad K; Yassin MA; Kivijärvi T; Heggset EB; Syverud K; Mustafa K
    Biomacromolecules; 2018 Nov; 19(11):4307-4319. PubMed ID: 30296827
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Facile manufacturing of fused-deposition modeled composite scaffolds for tissue engineering-an embedding model with plasticity for incorporation of additives.
    Manjunath KS; Sridhar K; Gopinath V; Sankar K; Sundaram A; Gupta N; Shiek ASSJ; Shantanu PS
    Biomed Mater; 2020 Dec; 16(1):015028. PubMed ID: 33331292
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanoclay-enriched poly(ɛ-caprolactone) electrospun scaffolds for osteogenic differentiation of human mesenchymal stem cells.
    Gaharwar AK; Mukundan S; Karaca E; Dolatshahi-Pirouz A; Patel A; Rangarajan K; Mihaila SM; Iviglia G; Zhang H; Khademhosseini A
    Tissue Eng Part A; 2014 Aug; 20(15-16):2088-101. PubMed ID: 24842693
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three dimensional electrospun PCL/PLA blend nanofibrous scaffolds with significantly improved stem cells osteogenic differentiation and cranial bone formation.
    Yao Q; Cosme JG; Xu T; Miszuk JM; Picciani PH; Fong H; Sun H
    Biomaterials; 2017 Jan; 115():115-127. PubMed ID: 27886552
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stem Cell-Seeded 3D-Printed Scaffolds Combined with Self-Assembling Peptides for Bone Defect Repair.
    Xu H; Wang C; Liu C; Li J; Peng Z; Guo J; Zhu L
    Tissue Eng Part A; 2022 Feb; 28(3-4):111-124. PubMed ID: 34157886
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selective laser sintering fabrication of nano-hydroxyapatite/poly-ε-caprolactone scaffolds for bone tissue engineering applications.
    Xia Y; Zhou P; Cheng X; Xie Y; Liang C; Li C; Xu S
    Int J Nanomedicine; 2013; 8():4197-213. PubMed ID: 24204147
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.