These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 38905237)

  • 1. Insights into stereoselective ring formation in canonical strigolactone: Identification of a dirigent domain-containing enzyme catalyzing orobanchol synthesis.
    Homma M; Wakabayashi T; Moriwaki Y; Shiotani N; Shigeta T; Isobe K; Okazawa A; Ohta D; Terada T; Shimizu K; Mizutani M; Takikawa H; Sugimoto Y
    Proc Natl Acad Sci U S A; 2024 Jun; 121(26):e2313683121. PubMed ID: 38905237
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CYP722C from Gossypium arboreum catalyzes the conversion of carlactonoic acid to 5-deoxystrigol.
    Wakabayashi T; Shida K; Kitano Y; Takikawa H; Mizutani M; Sugimoto Y
    Planta; 2020 Apr; 251(5):97. PubMed ID: 32306106
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct conversion of carlactonoic acid to orobanchol by cytochrome P450 CYP722C in strigolactone biosynthesis.
    Wakabayashi T; Hamana M; Mori A; Akiyama R; Ueno K; Osakabe K; Osakabe Y; Suzuki H; Takikawa H; Mizutani M; Sugimoto Y
    Sci Adv; 2019 Dec; 5(12):eaax9067. PubMed ID: 32064317
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The tomato MAX1 homolog, SlMAX1, is involved in the biosynthesis of tomato strigolactones from carlactone.
    Zhang Y; Cheng X; Wang Y; Díez-Simón C; Flokova K; Bimbo A; Bouwmeester HJ; Ruyter-Spira C
    New Phytol; 2018 Jul; 219(1):297-309. PubMed ID: 29655242
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stereospecificity in strigolactone biosynthesis and perception.
    Flematti GR; Scaffidi A; Waters MT; Smith SM
    Planta; 2016 Jun; 243(6):1361-73. PubMed ID: 27105887
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The tomato cytochrome P450 CYP712G1 catalyses the double oxidation of orobanchol en route to the rhizosphere signalling strigolactone, solanacol.
    Wang Y; Durairaj J; Suárez Duran HG; van Velzen R; Flokova K; Liao CY; Chojnacka A; MacFarlane S; Schranz ME; Medema MH; van Dijk ADJ; Dong L; Bouwmeester HJ
    New Phytol; 2022 Sep; 235(5):1884-1899. PubMed ID: 35612785
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conversion of carlactone to carlactonoic acid is a conserved function of MAX1 homologs in strigolactone biosynthesis.
    Yoneyama K; Mori N; Sato T; Yoda A; Xie X; Okamoto M; Iwanaga M; Ohnishi T; Nishiwaki H; Asami T; Yokota T; Akiyama K; Yoneyama K; Nomura T
    New Phytol; 2018 Jun; 218(4):1522-1533. PubMed ID: 29479714
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of novel canonical strigolactones produced by tomato.
    Wakabayashi T; Moriyama D; Miyamoto A; Okamura H; Shiotani N; Shimizu N; Mizutani M; Takikawa H; Sugimoto Y
    Front Plant Sci; 2022; 13():1064378. PubMed ID: 36589093
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Which are the major players, canonical or non-canonical strigolactones?
    Yoneyama K; Xie X; Yoneyama K; Kisugi T; Nomura T; Nakatani Y; Akiyama K; McErlean CSP
    J Exp Bot; 2018 Apr; 69(9):2231-2239. PubMed ID: 29522151
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure Elucidation and Biosynthesis of Orobanchol.
    Wakabayashi T; Ueno K; Sugimoto Y
    Front Plant Sci; 2022; 13():835160. PubMed ID: 35222492
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification and characterization of sorgomol synthase in sorghum strigolactone biosynthesis.
    Wakabayashi T; Ishiwa S; Shida K; Motonami N; Suzuki H; Takikawa H; Mizutani M; Sugimoto Y
    Plant Physiol; 2021 Apr; 185(3):902-913. PubMed ID: 33793911
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rice cytochrome P450 MAX1 homologs catalyze distinct steps in strigolactone biosynthesis.
    Zhang Y; van Dijk AD; Scaffidi A; Flematti GR; Hofmann M; Charnikhova T; Verstappen F; Hepworth J; van der Krol S; Leyser O; Smith SM; Zwanenburg B; Al-Babili S; Ruyter-Spira C; Bouwmeester HJ
    Nat Chem Biol; 2014 Dec; 10(12):1028-33. PubMed ID: 25344813
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evidence for species-dependent biosynthetic pathways for converting carlactone to strigolactones in plants.
    Iseki M; Shida K; Kuwabara K; Wakabayashi T; Mizutani M; Takikawa H; Sugimoto Y
    J Exp Bot; 2018 Apr; 69(9):2305-2318. PubMed ID: 29294064
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure and activity of strigolactones: new plant hormones with a rich future.
    Zwanenburg B; Pospísil T
    Mol Plant; 2013 Jan; 6(1):38-62. PubMed ID: 23204499
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Stereoselective Strigolactone Biosynthesis Catalyzed by a 2-Oxoglutarate-Dependent Dioxygenase in Sorghum.
    Yoda A; Xie X; Yoneyama K; Miura K; McErlean CSP; Nomura T
    Plant Cell Physiol; 2023 Sep; 64(9):1034-1045. PubMed ID: 37307421
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of a Prunus MAX1 homolog as a unique strigol synthase.
    Wu S; Zhou A; Hiugano K; Yoda A; Xie X; Yamane K; Miura K; Nomura T; Li Y
    New Phytol; 2023 Sep; 239(5):1819-1833. PubMed ID: 37292030
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A tomato strigolactone-impaired mutant displays aberrant shoot morphology and plant interactions.
    Koltai H; LekKala SP; Bhattacharya C; Mayzlish-Gati E; Resnick N; Wininger S; Dor E; Yoneyama K; Yoneyama K; Hershenhorn J; Joel DM; Kapulnik Y
    J Exp Bot; 2010 Jun; 61(6):1739-49. PubMed ID: 20194924
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Strigolactones: new plant hormones in the spotlight.
    Zwanenburg B; Blanco-Ania D
    J Exp Bot; 2018 Apr; 69(9):2205-2218. PubMed ID: 29385517
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Light is a positive regulator of strigolactone levels in tomato roots.
    Koltai H; Cohen M; Chesin O; Mayzlish-Gati E; Bécard G; Puech V; Ben Dor B; Resnick N; Wininger S; Kapulnik Y
    J Plant Physiol; 2011 Nov; 168(16):1993-6. PubMed ID: 21802170
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 2-oxoglutarate-dependent dioxygenases and BAHD acyltransferases drive the structural diversification of orobanchol in Fabaceae plants.
    Homma M; Uchida K; Wakabayashi T; Mizutani M; Takikawa H; Sugimoto Y
    Front Plant Sci; 2024; 15():1392212. PubMed ID: 38699535
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.