These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 38905238)

  • 1. Hydrogen isotope fractionation is controlled by CO
    Torres-Romero I; Zhang H; Wijker RS; Clark AJ; McLeod RE; Jaggi M; Stoll HM
    Proc Natl Acad Sci U S A; 2024 Jun; 121(26):e2318570121. PubMed ID: 38905238
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Influence of Growth Rate on 2H/1H Fractionation in Continuous Cultures of the Coccolithophorid Emiliania huxleyi and the Diatom Thalassiosira pseudonana.
    Sachs JP; Kawka OE
    PLoS One; 2015; 10(11):e0141643. PubMed ID: 26576007
    [TBL] [Abstract][Full Text] [Related]  

  • 3.
    Wijker RS; Sessions AL; Fuhrer T; Phan M
    Proc Natl Acad Sci U S A; 2019 Jun; 116(25):12173-12182. PubMed ID: 31152138
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interaction of the coccolithophore Gephyrocapsa oceanica with its carbon environment: response to a recreated high-CO2 geological past.
    Moolna A; Rickaby RE
    Geobiology; 2012 Jan; 10(1):72-81. PubMed ID: 22118223
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stable carbon isotope fractionation data between H(2)CO(3)(*) and CO(2)(g) extended to 120 °C.
    Myrttinen A; Becker V; Mayer B; Barth JA
    Rapid Commun Mass Spectrom; 2014 Aug; 28(15):1691-6. PubMed ID: 24975249
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Numerical cell model investigating cellular carbon fluxes in Emiliania huxleyi.
    Holtz LM; Wolf-Gladrow D; Thoms S
    J Theor Biol; 2015 Jan; 364():305-15. PubMed ID: 25225029
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of Rubisco kinetics and pyrenoid morphology in shaping the CCM of haptophyte microalgae.
    Heureux AMC; Young JN; Whitney SM; Eason-Hubbard MR; Lee RBY; Sharwood RE; Rickaby REM
    J Exp Bot; 2017 Jun; 68(14):3959-3969. PubMed ID: 28582571
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrogen isotopic differences between C
    Zhou Y; Grice K; Stuart-Williams H; Hocart CH; Gessler A; Farquhar GD
    Plant Cell Environ; 2016 Dec; 39(12):2676-2690. PubMed ID: 27566133
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adaptive evolution in the coccolithophore Gephyrocapsa oceanica following 1,000 generations of selection under elevated CO
    Tong S; Gao K; Hutchins DA
    Glob Chang Biol; 2018 Jul; 24(7):3055-3064. PubMed ID: 29356310
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Alternative photosynthesis pathways drive the algal CO
    Burlacot A; Dao O; Auroy P; Cuiné S; Li-Beisson Y; Peltier G
    Nature; 2022 May; 605(7909):366-371. PubMed ID: 35477755
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The potential for co-evolution of CO2-concentrating mechanisms and Rubisco in diatoms.
    Young JN; Hopkinson BM
    J Exp Bot; 2017 Jun; 68(14):3751-3762. PubMed ID: 28645158
    [TBL] [Abstract][Full Text] [Related]  

  • 12.
    Cormier MA; Werner RA; Sauer PE; Gröcke DR; Leuenberger MC; Wieloch T; Schleucher J; Kahmen A
    New Phytol; 2018 Apr; 218(2):479-491. PubMed ID: 29460486
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The CO2 concentrating mechanism and photosynthetic carbon assimilation in limiting CO2 : how Chlamydomonas works against the gradient.
    Wang Y; Stessman DJ; Spalding MH
    Plant J; 2015 May; 82(3):429-448. PubMed ID: 25765072
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evolutionary responses of a coccolithophorid Gephyrocapsa oceanica to ocean acidification.
    Jin P; Gao K; Beardall J
    Evolution; 2013 Jul; 67(7):1869-78. PubMed ID: 23815645
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photosynthesis and calcification of the coccolithophore Emiliania huxleyi are more sensitive to changed levels of light and CO
    Zhang Y; Gao K
    J Photochem Photobiol B; 2021 Apr; 217():112145. PubMed ID: 33735745
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of chloroplast movement in C4 photosynthesis: a theoretical analysis using a three-dimensional reaction-diffusion model for maize.
    Retta MA; Yin X; Ho QT; Watté R; Berghuijs HNC; Verboven P; Saeys W; Cano FJ; Ghannoum O; Struik PC; Nicolaï BM
    J Exp Bot; 2023 Aug; 74(14):4125-4142. PubMed ID: 37083863
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of RuBisCO and CO
    Garcia AK; Kędzior M; Taton A; Li M; Young JN; Kaçar B
    Geobiology; 2023 May; 21(3):390-403. PubMed ID: 36602111
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Large D/H variations in bacterial lipids reflect central metabolic pathways.
    Zhang X; Gillespie AL; Sessions AL
    Proc Natl Acad Sci U S A; 2009 Aug; 106(31):12580-6. PubMed ID: 19617564
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A chloroplast pump model for the CO2 concentrating mechanism in the diatom Phaeodactylum tricornutum.
    Hopkinson BM
    Photosynth Res; 2014 Sep; 121(2-3):223-33. PubMed ID: 24292858
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Linking the Dynamic Response of the Carbon Dioxide-Concentrating Mechanism to Carbon Assimilation Behavior in Fremyella diplosiphon.
    Rohnke BA; Rodríguez Pérez KJ; Montgomery BL
    mBio; 2020 May; 11(3):. PubMed ID: 32457252
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.