BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 38905343)

  • 1. Resistance to freezing conditions of endemic Antarctic polychaetes is enhanced by cryoprotective proteins produced by their microbiome.
    Buschi E; Dell'Anno A; Tangherlini M; Candela M; Rampelli S; Turroni S; Palladino G; Esposito E; Martire ML; Musco L; Stefanni S; Munari C; Fiori J; Danovaro R; Corinaldesi C
    Sci Adv; 2024 Jun; 10(25):eadk9117. PubMed ID: 38905343
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rhodobacteraceae dominate the core microbiome of the sea star
    Buschi E; Dell'Anno A; Tangherlini M; Stefanni S; Lo Martire M; Núñez-Pons L; Avila C; Corinaldesi C
    Front Microbiol; 2023; 14():1234725. PubMed ID: 37799611
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cryoprotective dehydration and the resistance to inoculative freezing in the Antarctic midge, Belgica antarctica.
    Elnitsky MA; Hayward SA; Rinehart JP; Denlinger DL; Lee RE
    J Exp Biol; 2008 Feb; 211(Pt 4):524-30. PubMed ID: 18245628
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Significance and interspecific variability of accumulated trace metal concentrations in Antarctic benthic polychaetes.
    Hans J; Jöst C; Zauke GP
    Sci Total Environ; 2011 Jun; 409(14):2845-51. PubMed ID: 21555146
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unveiling microbial guilds and symbiotic relationships in Antarctic sponge microbiomes.
    Moreno-Pino M; Manrique-de-la-Cuba MF; López-Rodríguez M; Parada-Pozo G; Rodríguez-Marconi S; Ribeiro CG; Flores-Herrera P; Guajardo M; Trefault N
    Sci Rep; 2024 Mar; 14(1):6371. PubMed ID: 38493232
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polychaeta Orbiniidae from Antarctica, the Southern Ocean, the Abyssal Pacific Ocean, and off South America.
    Blake JA
    Zootaxa; 2017 Jan; 4218(1):zootaxa.4218.1.1. PubMed ID: 28187682
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Freezing and thawing in Antarctica: characterization of antifreeze protein (AFP) producing microorganisms isolated from King George Island, Antarctica.
    Lopes JC; Veiga VP; Seminiuk B; Santos LOF; Luiz AMC; Fernandes CA; Kinasz CT; Pellizari VH; Duarte RTD
    Braz J Microbiol; 2024 Jun; 55(2):1451-1463. PubMed ID: 38656427
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The genomic basis for colonizing the freezing Southern Ocean revealed by Antarctic toothfish and Patagonian robalo genomes.
    Chen L; Lu Y; Li W; Ren Y; Yu M; Jiang S; Fu Y; Wang J; Peng S; Bilyk KT; Murphy KR; Zhuang X; Hune M; Zhai W; Wang W; Xu Q; Cheng CC
    Gigascience; 2019 Apr; 8(4):. PubMed ID: 30715292
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unveiling the co-phylogeny signal between plunderfish
    Schwob G; Cabrol L; Saucède T; Gérard K; Poulin E; Orlando J
    Microbiol Spectr; 2024 Apr; 12(4):e0383023. PubMed ID: 38441978
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The environmental physiology of Antarctic terrestrial nematodes: a review.
    Wharton DA
    J Comp Physiol B; 2003 Nov; 173(8):621-8. PubMed ID: 14615899
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microbiome profile of the Antarctic clam Laternula elliptica.
    González-Aravena M; Perrois G; Font A; Cárdenas CA; Rondon R
    Braz J Microbiol; 2024 Mar; 55(1):487-497. PubMed ID: 38157148
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evidence for strong environmental control on bacterial microbiomes of Antarctic springtails.
    Leo C; Nardi F; Cucini C; Frati F; Convey P; Weedon JT; Roelofs D; Carapelli A
    Sci Rep; 2021 Feb; 11(1):2973. PubMed ID: 33536493
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Benthic changes during 10 years of organic enrichment by McMurdo Station, Antarctica.
    Conlan KE; Kim SL; Lenihan HS; Oliver JS
    Mar Pollut Bull; 2004 Jul; 49(1-2):43-60. PubMed ID: 15234873
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lifting the veil on arid-to-hyperarid Antarctic soil microbiomes: a tale of two oases.
    Zhang E; Thibaut LM; Terauds A; Raven M; Tanaka MM; van Dorst J; Wong SY; Crane S; Ferrari BC
    Microbiome; 2020 Mar; 8(1):37. PubMed ID: 32178729
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microbiome Composition and Diversity of the Ice-Dwelling Sea Anemone, Edwardsiella andrillae.
    Murray AE; Rack FR; Zook R; Williams MJ; Higham ML; Broe M; Kaufmann RS; Daly M
    Integr Comp Biol; 2016 Oct; 56(4):542-55. PubMed ID: 27493149
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spatial pattern in Antarctica: what can we learn from Antarctic bacterial isolates?
    Chong CW; Goh YS; Convey P; Pearce D; Tan IK
    Extremophiles; 2013 Sep; 17(5):733-45. PubMed ID: 23812890
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genome sequences of two Antarctic strains of Pseudomonas prosekii: insights into adaptation to extreme conditions.
    Snopková K; Čejková D; Dufková K; Sedláček I; Šmajs D
    Arch Microbiol; 2020 Apr; 202(3):447-454. PubMed ID: 31691844
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure and function of the Arctic and Antarctic marine microbiota as revealed by metagenomics.
    Cao S; Zhang W; Ding W; Wang M; Fan S; Yang B; Mcminn A; Wang M; Xie BB; Qin QL; Chen XL; He J; Zhang YZ
    Microbiome; 2020 Apr; 8(1):47. PubMed ID: 32241287
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hyperaccumulation of vanadium in the Antarctic polychaete Perkinsiana littoralis as a natural chemical defense against predation.
    Fattorini D; Notti A; Nigro M; Regoli F
    Environ Sci Pollut Res Int; 2010 Jan; 17(1):220-8. PubMed ID: 19820975
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The pangenome of (Antarctic) Pseudoalteromonas bacteria: evolutionary and functional insights.
    Bosi E; Fondi M; Orlandini V; Perrin E; Maida I; de Pascale D; Tutino ML; Parrilli E; Lo Giudice A; Filloux A; Fani R
    BMC Genomics; 2017 Jan; 18(1):93. PubMed ID: 28095778
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.