These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
152 related articles for article (PubMed ID: 38905434)
1. Potential of digital chest radiography-based deep learning in screening and diagnosing pneumoconiosis: An observational study. Zhang Y; Zheng B; Zeng F; Cheng X; Wu T; Peng Y; Zhang Y; Xie Y; Yi W; Chen W; Wu J; Li L Medicine (Baltimore); 2024 Jun; 103(25):e38478. PubMed ID: 38905434 [TBL] [Abstract][Full Text] [Related]
2. Potential of deep learning in assessing pneumoconiosis depicted on digital chest radiography. Wang X; Yu J; Zhu Q; Li S; Zhao Z; Yang B; Pu J Occup Environ Med; 2020 Sep; 77(9):597-602. PubMed ID: 32471837 [TBL] [Abstract][Full Text] [Related]
3. Deep learning pneumoconiosis staging and diagnosis system based on multi-stage joint approach. Liu C; Fang Y; Xie Y; Zheng H; Li X; Wu D; Zhang T BMC Med Imaging; 2024 Jul; 24(1):165. PubMed ID: 38956579 [TBL] [Abstract][Full Text] [Related]
4. A deep learning-based model for screening and staging pneumoconiosis. Zhang L; Rong R; Li Q; Yang DM; Yao B; Luo D; Zhang X; Zhu X; Luo J; Liu Y; Yang X; Ji X; Liu Z; Xie Y; Sha Y; Li Z; Xiao G Sci Rep; 2021 Jan; 11(1):2201. PubMed ID: 33500426 [TBL] [Abstract][Full Text] [Related]
5. Computerized Classification of Pneumoconiosis on Digital Chest Radiography Artificial Neural Network with Three Stages. Okumura E; Kawashita I; Ishida T J Digit Imaging; 2017 Aug; 30(4):413-426. PubMed ID: 28108817 [TBL] [Abstract][Full Text] [Related]
6. Computerized analysis of pneumoconiosis in digital chest radiography: effect of artificial neural network trained with power spectra. Okumura E; Kawashita I; Ishida T J Digit Imaging; 2011 Dec; 24(6):1126-32. PubMed ID: 21153856 [TBL] [Abstract][Full Text] [Related]
7. The development and evaluation of a computerized diagnosis scheme for pneumoconiosis on digital chest radiographs. Zhu B; Luo W; Li B; Chen B; Yang Q; Xu Y; Wu X; Chen H; Zhang K Biomed Eng Online; 2014 Oct; 13():141. PubMed ID: 25277489 [TBL] [Abstract][Full Text] [Related]
8. Deep convolutional network-based chest radiographs screening model for pneumoconiosis. Li X; Xu M; Yan Z; Xia F; Li S; Zhang Y; Xing Z; Guan L Front Med (Lausanne); 2024; 11():1290729. PubMed ID: 38348336 [TBL] [Abstract][Full Text] [Related]
9. [A survey on the application of convolutional neural networks in the diagnosis of occupational pneumoconiosis]. Wang Y; Wu J; Wu D Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2024 Apr; 41(2):413-420. PubMed ID: 38686425 [TBL] [Abstract][Full Text] [Related]
10. [Application of a light-weighted convolutional neural network for automatic recognition of coal workers' pneumoconiosis in the early stage]. Cui FT; Wang Y; Ding XP; Yao YL; Li B; Shen FH Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi; 2023 Mar; 41(3):177-182. PubMed ID: 37006142 [No Abstract] [Full Text] [Related]
11. Development of CAD based on ANN analysis of power spectra for pneumoconiosis in chest radiographs: effect of three new enhancement methods. Okumura E; Kawashita I; Ishida T Radiol Phys Technol; 2014 Jul; 7(2):217-27. PubMed ID: 24414539 [TBL] [Abstract][Full Text] [Related]
12. [Computerized classification of pneumoconiosis radiographs based on grey level co-occurrence matrices]. Masumoto Y; Kawashita I; Okura Y; Nakajima M; Okumura E; Ishida T Nihon Hoshasen Gijutsu Gakkai Zasshi; 2011; 67(4):336-45. PubMed ID: 21532243 [TBL] [Abstract][Full Text] [Related]
13. AMFP-net: Adaptive multi-scale feature pyramid network for diagnosis of pneumoconiosis from chest X-ray images. Alam MS; Wang D; Sowmya A Artif Intell Med; 2024 Aug; 154():102917. PubMed ID: 38917599 [TBL] [Abstract][Full Text] [Related]
14. [Study on evaluation method of circular small shadow profusion in chest CT reconstruction images of pneumoconiosis]. Liu C; Yang M; Wang Q; Bai J; Duan Z; Dong HT Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi; 2024 May; 42(5):359-369. PubMed ID: 38802310 [No Abstract] [Full Text] [Related]
15. Use data augmentation for a deep learning classification model with chest X-ray clinical imaging featuring coal workers' pneumoconiosis. Dong H; Zhu B; Zhang X; Kong X BMC Pulm Med; 2022 Jul; 22(1):271. PubMed ID: 35840945 [TBL] [Abstract][Full Text] [Related]
16. Comparing film and digital radiographs for reliability of pneumoconiosis classifications: a modeling approach. Sen A; Lee SY; Gillespie BW; Kazerooni EA; Goodsitt MM; Rosenman KD; Lockey JE; Meyer CA; Petsonk EL; Wang ML; Franzblau A Acad Radiol; 2010 Apr; 17(4):511-9. PubMed ID: 20207319 [TBL] [Abstract][Full Text] [Related]
17. Pneumoconiosis computer aided diagnosis system based on X-rays and deep learning. Yang F; Tang ZR; Chen J; Tang M; Wang S; Qi W; Yao C; Yu Y; Guo Y; Yu Z BMC Med Imaging; 2021 Dec; 21(1):189. PubMed ID: 34879818 [TBL] [Abstract][Full Text] [Related]
18. Deep learning for chest radiograph diagnosis: A retrospective comparison of the CheXNeXt algorithm to practicing radiologists. Rajpurkar P; Irvin J; Ball RL; Zhu K; Yang B; Mehta H; Duan T; Ding D; Bagul A; Langlotz CP; Patel BN; Yeom KW; Shpanskaya K; Blankenberg FG; Seekins J; Amrhein TJ; Mong DA; Halabi SS; Zucker EJ; Ng AY; Lungren MP PLoS Med; 2018 Nov; 15(11):e1002686. PubMed ID: 30457988 [TBL] [Abstract][Full Text] [Related]
19. Comparison of digital with film radiographs for the classification of pneumoconiotic pleural abnormalities. Larson TC; Holiday DB; Antao VC; Thomas J; Pinheiro G; Kapil V; Franzblau A Acad Radiol; 2012 Feb; 19(2):131-40. PubMed ID: 22098943 [TBL] [Abstract][Full Text] [Related]
20. Support vector machine model for diagnosing pneumoconiosis based on wavelet texture features of digital chest radiographs. Zhu B; Chen H; Chen B; Xu Y; Zhang K J Digit Imaging; 2014 Feb; 27(1):90-7. PubMed ID: 23836078 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]