These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 38905678)

  • 1. Local and Nonlocal Electronic Correlations at the Metal-Insulator Transition in the Two-Dimensional Hubbard Model.
    Chatzieleftheriou M; Biermann S; Stepanov EA
    Phys Rev Lett; 2024 Jun; 132(23):236504. PubMed ID: 38905678
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Can Orbital-Selective Néel Transitions Survive Strong Nonlocal Electronic Correlations?
    Stepanov EA; Biermann S
    Phys Rev Lett; 2024 May; 132(22):226501. PubMed ID: 38877940
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mott transition, magnetic and orbital orders in the ground state of the two-band Hubbard model using variational slave-spin mean field formalism.
    Maurya AK; Sarder MTH; Medhi A
    J Phys Condens Matter; 2021 Nov; 34(5):. PubMed ID: 34710854
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Light-induced insulator-metal transition in Sr
    Choi D; Yue C; Azoury D; Porter Z; Chen J; Petocchi F; Baldini E; Lv B; Mogi M; Su Y; Wilson SD; Eckstein M; Werner P; Gedik N
    Proc Natl Acad Sci U S A; 2024 Jul; 121(29):e2323013121. PubMed ID: 38976737
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling Unconventional Superconductivity at the Crossover between Strong and Weak Electronic Interactions.
    Christensen MH; Wang X; Schattner Y; Berg E; Fernandes RM
    Phys Rev Lett; 2020 Dec; 125(24):247001. PubMed ID: 33412040
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Absence of a Slater transition in the two-dimensional Hubbard model.
    Moukouri S; Jarrell M
    Phys Rev Lett; 2001 Oct; 87(16):167010. PubMed ID: 11690234
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spin and Charge Correlations across the Metal-to-Insulator Crossover in the Half-Filled 2D Hubbard Model.
    Kim AJ; Simkovic F; Kozik E
    Phys Rev Lett; 2020 Mar; 124(11):117602. PubMed ID: 32242729
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Eliminating Orbital Selectivity from the Metal-Insulator Transition by Strong Magnetic Fluctuations.
    Stepanov EA
    Phys Rev Lett; 2022 Aug; 129(9):096404. PubMed ID: 36083639
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of spin and charge fluctuations on spectra of the two-dimensional Hubbard model.
    Sherman A
    J Phys Condens Matter; 2018 May; 30(19):195601. PubMed ID: 29583129
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microscopic study of a spin-orbit-induced Mott insulator in Ir oxides.
    Watanabe H; Shirakawa T; Yunoki S
    Phys Rev Lett; 2010 Nov; 105(21):216410. PubMed ID: 21231335
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Strain-Modulated Slater-Mott Crossover of Pseudospin-Half Square-Lattice in (SrIrO_{3})_{1}/(SrTiO_{3})_{1} Superlattices.
    Yang J; Hao L; Meyers D; Dasa T; Xu L; Horak L; Shafer P; Arenholz E; Fabbris G; Choi Y; Haskel D; Karapetrova J; Kim JW; Ryan PJ; Xu H; Batista CD; Dean MPM; Liu J
    Phys Rev Lett; 2020 May; 124(17):177601. PubMed ID: 32412287
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two-dimensional Heisenberg behavior of J(eff)=1/2 isospins in the paramagnetic state of the spin-orbital Mott insulator Sr2IrO4.
    Fujiyama S; Ohsumi H; Komesu T; Matsuno J; Kim BJ; Takata M; Arima T; Takagi H
    Phys Rev Lett; 2012 Jun; 108(24):247212. PubMed ID: 23004324
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Magnetic order and Mott transition on the checkerboard lattice.
    Swain N; Majumdar P
    J Phys Condens Matter; 2017 Mar; 29(8):085603. PubMed ID: 28000619
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A tunable bilayer Hubbard model in twisted WSe
    Xu Y; Kang K; Watanabe K; Taniguchi T; Mak KF; Shan J
    Nat Nanotechnol; 2022 Sep; 17(9):934-939. PubMed ID: 35915334
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spin-Orbital Density Wave and a Mott Insulator in a Two-Orbital Hubbard Model on a Honeycomb Lattice.
    Zhu Z; Sheng DN; Fu L
    Phys Rev Lett; 2019 Aug; 123(8):087602. PubMed ID: 31491210
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anomalous magnetoresistance due to longitudinal spin fluctuations in a J
    Hao L; Wang Z; Yang J; Meyers D; Sanchez J; Fabbris G; Choi Y; Kim JW; Haskel D; Ryan PJ; Barros K; Chu JH; Dean MPM; Batista CD; Liu J
    Nat Commun; 2019 Nov; 10(1):5301. PubMed ID: 31757946
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Switching between Mott-Hubbard and Hund Physics in Moiré Quantum Simulators.
    Ryee S; Wehling TO
    Nano Lett; 2023 Jan; 23(2):573-579. PubMed ID: 36622289
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mott physics and topological phase transition in correlated dirac fermions.
    Yu SL; Xie XC; Li JX
    Phys Rev Lett; 2011 Jul; 107(1):010401. PubMed ID: 21797524
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantum spin liquids unveil the genuine Mott state.
    Pustogow A; Bories M; Löhle A; Rösslhuber R; Zhukova E; Gorshunov B; Tomić S; Schlueter JA; Hübner R; Hiramatsu T; Yoshida Y; Saito G; Kato R; Lee TH; Dobrosavljević V; Fratini S; Dressel M
    Nat Mater; 2018 Sep; 17(9):773-777. PubMed ID: 30082905
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Symmetry-Broken Perturbation Theory to Large Orders in Antiferromagnetic Phases.
    Garioud R; Šimkovic F; Rossi R; Spada G; Schäfer T; Werner F; Ferrero M
    Phys Rev Lett; 2024 Jun; 132(24):246505. PubMed ID: 38949372
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.