These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 38905721)

  • 1. Finding ways into the cytosol: Peptide-mediated approaches for delivering proteins into cells.
    Kawaguchi Y; Futaki S
    Curr Opin Chem Biol; 2024 Aug; 81():102482. PubMed ID: 38905721
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Endosome-disruptive peptides for improving cytosolic delivery of bioactive macromolecules.
    Nakase I; Kobayashi S; Futaki S
    Biopolymers; 2010; 94(6):763-70. PubMed ID: 20564044
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimizing Charge Switching in Membrane Lytic Peptides for Endosomal Release of Biomacromolecules.
    Sakamoto K; Akishiba M; Iwata T; Murata K; Mizuno S; Kawano K; Imanishi M; Sugiyama F; Futaki S
    Angew Chem Int Ed Engl; 2020 Nov; 59(45):19990-19998. PubMed ID: 32557993
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intracellular delivery strategies using membrane-interacting peptides and proteins.
    Mai LD; Wimberley SC; Champion JA
    Nanoscale; 2024 Aug; 16(33):15465-15480. PubMed ID: 39091235
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Endosomal Escape and Cytosolic Penetration of Macromolecules Mediated by Synthetic Delivery Agents.
    Brock DJ; Kondow-McConaghy HM; Hager EC; Pellois JP
    Bioconjug Chem; 2019 Feb; 30(2):293-304. PubMed ID: 30462487
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inducible Membrane Permeabilization by Attenuated Lytic Peptides: A New Concept for Accessing Cell Interiors through Ruffled Membranes.
    Akishiba M; Futaki S
    Mol Pharm; 2019 Jun; 16(6):2540-2548. PubMed ID: 30945865
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stimulating Macropinocytosis for Intracellular Nucleic Acid and Protein Delivery: A Combined Strategy with Membrane-Lytic Peptides To Facilitate Endosomal Escape.
    Arafiles JVV; Hirose H; Akishiba M; Tsuji S; Imanishi M; Futaki S
    Bioconjug Chem; 2020 Mar; 31(3):547-553. PubMed ID: 32017537
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Endocytosis, intracellular traffic and fate of cell penetrating peptide based conjugates and nanoparticles.
    Cleal K; He L; Watson PD; Jones AT
    Curr Pharm Des; 2013; 19(16):2878-94. PubMed ID: 23140451
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Delivering quantum dot-peptide bioconjugates to the cellular cytosol: escaping from the endolysosomal system.
    Delehanty JB; Bradburne CE; Boeneman K; Susumu K; Farrell D; Mei BC; Blanco-Canosa JB; Dawson G; Dawson PE; Mattoussi H; Medintz IL
    Integr Biol (Camb); 2010 Jun; 2(5-6):265-77. PubMed ID: 20535418
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plasma membrane depolarization reveals endosomal escape incapacity of cell-penetrating peptides.
    Serulla M; Anees P; Hallaj A; Trofimenko E; Kalia T; Krishnan Y; Widmann C
    Eur J Pharm Biopharm; 2023 Mar; 184():116-124. PubMed ID: 36709921
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modular Redesign of a Cationic Lytic Peptide To Promote the Endosomal Escape of Biomacromolecules.
    Azuma Y; Imai H; Kawaguchi Y; Nakase I; Kimura H; Futaki S
    Angew Chem Int Ed Engl; 2018 Sep; 57(39):12771-12774. PubMed ID: 30101453
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Endosomal escape efficiency of fusogenic B18 and B55 peptides fused with anti-EGFR single chain Fv as estimated by nuclear translocation.
    Niikura K; Horisawa K; Doi N
    J Biochem; 2016 Jan; 159(1):123-32. PubMed ID: 26338729
    [TBL] [Abstract][Full Text] [Related]  

  • 13. HOPS-dependent endosomal fusion required for efficient cytosolic delivery of therapeutic peptides and small proteins.
    Steinauer A; LaRochelle JR; Knox SL; Wissner RF; Berry S; Schepartz A
    Proc Natl Acad Sci U S A; 2019 Jan; 116(2):512-521. PubMed ID: 30610181
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genetic and Covalent Protein Modification Strategies to Facilitate Intracellular Delivery.
    Horn JM; Obermeyer AC
    Biomacromolecules; 2021 Dec; 22(12):4883-4904. PubMed ID: 34855385
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineering of a tumor cell-specific, cytosol-penetrating antibody with high endosomal escape efficacy.
    Kim JS; Park JY; Shin SM; Park SW; Jun SY; Hong JS; Choi DK; Kim YS
    Biochem Biophys Res Commun; 2018 Sep; 503(4):2510-2516. PubMed ID: 30208519
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Endosomal escape pathways for delivery of biologicals.
    Varkouhi AK; Scholte M; Storm G; Haisma HJ
    J Control Release; 2011 May; 151(3):220-8. PubMed ID: 21078351
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Overcoming Endosomal Entrapment in Drug Delivery.
    Pei D; Buyanova M
    Bioconjug Chem; 2019 Feb; 30(2):273-283. PubMed ID: 30525488
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Delivery of macromolecules using arginine-rich cell-penetrating peptides: ways to overcome endosomal entrapment.
    El-Sayed A; Futaki S; Harashima H
    AAPS J; 2009 Mar; 11(1):13-22. PubMed ID: 19125334
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct cytosolic delivery of polar cargo to cells by spontaneous membrane-translocating peptides.
    He J; Kauffman WB; Fuselier T; Naveen SK; Voss TG; Hristova K; Wimley WC
    J Biol Chem; 2013 Oct; 288(41):29974-86. PubMed ID: 23983125
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Endo-Porter: a novel reagent for safe, effective delivery of substances into cells.
    Summerton JE
    Ann N Y Acad Sci; 2005 Nov; 1058():62-75. PubMed ID: 16394126
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.