These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 38905832)

  • 21. Application of invasive weed optimization and least square support vector machine for prediction of beef adulteration with spoiled beef based on visible near-infrared (Vis-NIR) hyperspectral imaging.
    Zhao HT; Feng YZ; Chen W; Jia GF
    Meat Sci; 2019 May; 151():75-81. PubMed ID: 30716565
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Rapid quantification of the adulteration of fresh coconut water by dilution and sugars using Raman spectroscopy and chemometrics.
    Richardson PIC; Muhamadali H; Ellis DI; Goodacre R
    Food Chem; 2019 Jan; 272():157-164. PubMed ID: 30309526
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Machine Learning-Enabled NIR Spectroscopy. Part 2: Workflow for Selecting a Subset of Samples from Publicly Accessible Data.
    Ali H; Muthudoss P; Ramalingam M; Kanakaraj L; Paudel A; Ramasamy G
    AAPS PharmSciTech; 2023 Jan; 24(1):34. PubMed ID: 36627410
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Non-destructive detection and recognition of pesticide residue levels on cauliflowers using visible/near-infrared spectroscopy combined with chemometrics.
    Zhang M; Xue J; Li Y; Yin J; Liu Y; Wang K; Li Z
    J Food Sci; 2023 Oct; 88(10):4327-4342. PubMed ID: 37589297
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Synchronously Predicting Tea Polyphenol and Epigallocatechin Gallate in Tea Leaves Using Fourier Transform-Near-Infrared Spectroscopy and Machine Learning.
    Ye S; Weng H; Xiang L; Jia L; Xu J
    Molecules; 2023 Jul; 28(14):. PubMed ID: 37513250
    [TBL] [Abstract][Full Text] [Related]  

  • 26. NIR detection of honey adulteration reveals differences in water spectral pattern.
    Bázár G; Romvári R; Szabó A; Somogyi T; Éles V; Tsenkova R
    Food Chem; 2016 Mar; 194():873-80. PubMed ID: 26471630
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Rapid identification of the storage duration and species of sliced boletes using near-infrared spectroscopy.
    Chen J; Li JQ; Li T; Liu HG; Wang YZ
    J Food Sci; 2022 Jul; 87(7):2908-2919. PubMed ID: 35735248
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Simultaneous detection for adulterations of maltodextrin, sodium carbonate, and whey in raw milk using Raman spectroscopy and chemometrics.
    Tian H; Chen S; Li D; Lou X; Chen C; Yu H
    J Dairy Sci; 2022 Sep; 105(9):7242-7252. PubMed ID: 35863924
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A comparative study on classification of edible vegetable oils by infrared, near infrared and fluorescence spectroscopy combined with chemometrics.
    Yuan L; Meng X; Xin K; Ju Y; Zhang Y; Yin C; Hu L
    Spectrochim Acta A Mol Biomol Spectrosc; 2023 Mar; 288():122120. PubMed ID: 36473296
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Detection of starch adulteration in onion powder by FT-NIR and FT-IR spectroscopy.
    Lohumi S; Lee S; Lee WH; Kim MS; Mo C; Bae H; Cho BK
    J Agric Food Chem; 2014 Sep; 62(38):9246-51. PubMed ID: 25188555
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Detection and quantification of cocoa powder adulteration using Vis-NIR spectroscopy with chemometrics approach.
    Millatina NRN; Calle JLP; Barea-Sepúlveda M; Setyaningsih W; Palma M
    Food Chem; 2024 Aug; 449():139212. PubMed ID: 38583399
    [TBL] [Abstract][Full Text] [Related]  

  • 32. NIR spectroscopy and chemometric tools to identify high content of deoxynivalenol in barley.
    Caramês ETDS; Piacentini KC; Alves LT; Pallone JAL; Rocha LO
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2020 Sep; 37(9):1542-1552. PubMed ID: 32717175
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Melamine detection by mid- and near-infrared (MIR/NIR) spectroscopy: a quick and sensitive method for dairy products analysis including liquid milk, infant formula, and milk powder.
    Balabin RM; Smirnov SV
    Talanta; 2011 Jul; 85(1):562-8. PubMed ID: 21645742
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Feasibility of near-infrared spectroscopy to detect and to quantify adulterants in cow milk.
    Kasemsumran S; Thanapase W; Kiatsoonthon A
    Anal Sci; 2007 Jul; 23(7):907-10. PubMed ID: 17625339
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Raman spectroscopy combined with machine learning algorithms to detect adulterated Suichang native honey.
    Hu S; Li H; Chen C; Chen C; Zhao D; Dong B; Lv X; Zhang K; Xie Y
    Sci Rep; 2022 Mar; 12(1):3456. PubMed ID: 35236873
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Discriminant analysis of raw milk adulterated with botanical filling material using near infrared spectroscopy].
    Li L; Ding W
    Guang Pu Xue Yu Guang Pu Fen Xi; 2010 May; 30(5):1238-42. PubMed ID: 20672609
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A simple design for the validation of a FT-NIR screening method: Application to the detection of durum wheat pasta adulteration.
    De Girolamo A; Arroyo MC; Lippolis V; Cervellieri S; Cortese M; Pascale M; Logrieco AF; von Holst C
    Food Chem; 2020 Dec; 333():127449. PubMed ID: 32659663
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Rapid evaluation of Ziziphi Spinosae Semen and its adulterants based on the combination of FT-NIR and multivariate algorithms.
    Li MX; Shi YB; Zhang JB; Wan X; Fang J; Wu Y; Fu R; Li Y; Li L; Su LL; Ji D; Lu TL; Bian ZH
    Food Chem X; 2023 Dec; 20():101022. PubMed ID: 38144802
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Novel Application of Near-infrared Spectroscopy and Chemometrics Approach for Detection of Lime Juice Adulteration.
    Jahani R; Yazdanpanah H; van Ruth SM; Kobarfard F; Alewijn M; Mahboubi A; Faizi M; Shojaee AliAbadi MH; Salamzadeh J
    Iran J Pharm Res; 2020; 19(2):34-44. PubMed ID: 33224209
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Discrimination of lamb (Ovis aries), emu (Dromaius novaehollandiae), camel (Camelus dromedarius) and beef (Bos taurus) binary mixtures using a portable near infrared instrument combined with chemometrics.
    Hoffman L; Ingle P; Hemant Khole A; Zhang S; Yang Z; Beya M; Bureš D; Cozzolino D
    Spectrochim Acta A Mol Biomol Spectrosc; 2023 Jun; 294():122506. PubMed ID: 36868023
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.