These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 38905926)
1. Validation of OpenCap: A low-cost markerless motion capture system for lower-extremity kinematics during return-to-sport tasks. Turner JA; Chaaban CR; Padua DA J Biomech; 2024 Jun; 171():112200. PubMed ID: 38905926 [TBL] [Abstract][Full Text] [Related]
2. Concurrent validity of lower extremity kinematics and jump characteristics captured in pre-school children by a markerless 3D motion capture system. Harsted S; Holsgaard-Larsen A; Hestbæk L; Boyle E; Lauridsen HH Chiropr Man Therap; 2019; 27():39. PubMed ID: 31417672 [TBL] [Abstract][Full Text] [Related]
3. Lower extremity kinematic analysis in male athletes with unilateral anterior cruciate reconstruction in a jump-landing task and its association with return to sport criteria. Norouzi S; Esfandiarpour F; Mehdizadeh S; Yousefzadeh NK; Parnianpour M BMC Musculoskelet Disord; 2019 Oct; 20(1):492. PubMed ID: 31656192 [TBL] [Abstract][Full Text] [Related]
4. The association of psychological readiness to return to sport after anterior cruciate ligament reconstruction and hip and knee landing kinematics. Nagelli CV; Webster KE; Di Stasi S; Wordeman SC; Hewett TE Clin Biomech (Bristol); 2019 Aug; 68():104-108. PubMed ID: 31195246 [TBL] [Abstract][Full Text] [Related]
5. Rehabilitation and Return to Sport Assessment after Anterior Cruciate Ligament Injury: Quantifying Joint Kinematics during Complex High-Speed Tasks through Wearable Sensors. Di Paolo S; Lopomo NF; Della Villa F; Paolini G; Figari G; Bragonzoni L; Grassi A; Zaffagnini S Sensors (Basel); 2021 Mar; 21(7):. PubMed ID: 33810610 [TBL] [Abstract][Full Text] [Related]
6. Markerless motion capture estimates of lower extremity kinematics and kinetics are comparable to marker-based across 8 movements. Song K; Hullfish TJ; Scattone Silva R; Silbernagel KG; Baxter JR J Biomech; 2023 Aug; 157():111751. PubMed ID: 37552921 [TBL] [Abstract][Full Text] [Related]
7. Concurrent validation of the Xsens IMU system of lower-body kinematics in jump-landing and change-of-direction tasks. Nijmeijer EM; Heuvelmans P; Bolt R; Gokeler A; Otten E; Benjaminse A J Biomech; 2023 Jun; 154():111637. PubMed ID: 37210922 [TBL] [Abstract][Full Text] [Related]
8. Validation of a Commercially Available Markerless Motion-Capture System for Trunk and Lower Extremity Kinematics During a Jump-Landing Assessment. Mauntel TC; Cameron KL; Pietrosimone B; Marshall SW; Hackney AC; Padua DA J Athl Train; 2021 Feb; 56(2):177-190. PubMed ID: 33480993 [TBL] [Abstract][Full Text] [Related]
9. Inclusion of a skeletal model partly improves the reliability of lower limb joint angles derived from a markerless depth camera. Collings TJ; Devaprakash D; Pizzolato C; Lloyd DG; Barrett RS; Lenton GK; Thomeer LT; Bourne MN J Biomech; 2024 Jun; 170():112160. PubMed ID: 38824704 [TBL] [Abstract][Full Text] [Related]
10. AI-smartphone markerless motion capturing of hip, knee, and ankle joint kinematics during countermovement jumps. Barzyk P; Zimmermann P; Stein M; Keim D; Gruber M Eur J Sport Sci; 2024 Oct; 24(10):1452-1462. PubMed ID: 39205332 [TBL] [Abstract][Full Text] [Related]
11. Single-Joint and Whole-Body Movement Changes in Anterior Cruciate Ligament Athletes Returning to Sport. Smeets A; Verheul J; Vanrenterghem J; Staes F; Vandenneucker H; Claes S; Verschueren S Med Sci Sports Exerc; 2020 Aug; 52(8):1658-1667. PubMed ID: 32079913 [TBL] [Abstract][Full Text] [Related]
12. Moving outside the lab: Markerless motion capture accurately quantifies sagittal plane kinematics during the vertical jump. Drazan JF; Phillips WT; Seethapathi N; Hullfish TJ; Baxter JR J Biomech; 2021 Aug; 125():110547. PubMed ID: 34175570 [TBL] [Abstract][Full Text] [Related]
13. THE USE OF MICROSOFT KINECT ™ FOR ASSESSING READINESS OF RETURN TO SPORT AND INJURY RISK EXERCISES: A VALIDATION STUDY. Tipton CC; Telfer S; Cherones A; Gee AO; Kweon CY Int J Sports Phys Ther; 2019 Sep; 14(5):724-730. PubMed ID: 31598410 [TBL] [Abstract][Full Text] [Related]
14. Examination of 2D frontal and sagittal markerless motion capture: Implications for markerless applications. Wade L; Needham L; Evans M; McGuigan P; Colyer S; Cosker D; Bilzon J PLoS One; 2023; 18(11):e0293917. PubMed ID: 37943887 [TBL] [Abstract][Full Text] [Related]
15. Improvements in landing biomechanics following anterior cruciate ligament reconstruction in adolescent athletes. Mueske NM; Patel AR; Pace JL; Zaslow TL; VandenBerg CD; Katzel MJ; Edison BR; Wren TAL Sports Biomech; 2020 Dec; 19(6):738-749. PubMed ID: 30274539 [TBL] [Abstract][Full Text] [Related]
16. Repeatability and minimal detectable change including clothing effects for smartphone-based 3D markerless motion capture. Horsak B; Kainz H; Dumphart B J Biomech; 2024 Oct; 175():112281. PubMed ID: 39163799 [TBL] [Abstract][Full Text] [Related]
17. Concurrent validity of smartphone-based markerless motion capturing to quantify lower-limb joint kinematics in healthy and pathological gait. Horsak B; Eichmann A; Lauer K; Prock K; Krondorfer P; Siragy T; Dumphart B J Biomech; 2023 Oct; 159():111801. PubMed ID: 37738945 [TBL] [Abstract][Full Text] [Related]
19. Single leg vertical jump performance identifies knee function deficits at return to sport after ACL reconstruction in male athletes. Kotsifaki A; Van Rossom S; Whiteley R; Korakakis V; Bahr R; Sideris V; Jonkers I Br J Sports Med; 2022 May; 56(9):490-498. PubMed ID: 35135826 [TBL] [Abstract][Full Text] [Related]
20. Validity and Intrarater Reliability of 2-Dimensional Motion Analysis Using a Handheld Tablet Compared to Traditional 3-Dimensional Motion Analysis. Belyea BC; Lewis E; Gabor Z; Jackson J; King DL J Sport Rehabil; 2015 Nov; 24(4):. PubMed ID: 25612081 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]