BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 38906122)

  • 1. Numerical characterization of thermal transport in hexagonal tungsten disulfide (WS
    Ghosh A; Ahmed SS; Shawkat MSA; Subrina S
    Nanotechnology; 2024 Jun; ():. PubMed ID: 38906122
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phosphorene nanoribbon as a promising candidate for thermoelectric applications.
    Zhang J; Liu HJ; Cheng L; Wei J; Liang JH; Fan DD; Shi J; Tang XF; Zhang QJ
    Sci Rep; 2014 Sep; 4():6452. PubMed ID: 25245326
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermal transport characterization of carbon and silicon doped stanene nanoribbon: an equilibrium molecular dynamics study.
    Navid IA; Subrina S
    RSC Adv; 2018 Sep; 8(55):31690-31699. PubMed ID: 35548196
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermal transport properties of monolayer MoSe
    Ma JJ; Zheng JJ; Li WD; Wang DH; Wang BT
    Phys Chem Chem Phys; 2020 Mar; 22(10):5832-5838. PubMed ID: 32107519
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Strong reduction of thermal conductivity of WSe
    Wang B; Yan X; Yan H; Cai Y
    Nanotechnology; 2022 Apr; 33(27):. PubMed ID: 35349994
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermal transport characterization of stanene/silicene heterobilayer and stanene bilayer nanostructures.
    Noshin M; Khan AI; Subrina S
    Nanotechnology; 2018 May; 29(18):185706. PubMed ID: 29438099
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Atomic-scale analysis of the physical strength and phonon transport mechanisms of monolayer β-bismuthene.
    Chowdhury EH; Rahman MH; Bose P; Jayan R; Islam MM
    Phys Chem Chem Phys; 2020 Dec; 22(48):28238-28255. PubMed ID: 33295342
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Excellent Thermoelectric Properties in monolayer WSe
    Wang J; Xie F; Cao XH; An SC; Zhou WX; Tang LM; Chen KQ
    Sci Rep; 2017 Jan; 7():41418. PubMed ID: 28120912
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Control of thermal and electronic transport in defect-engineered graphene nanoribbons.
    Haskins J; Kınacı A; Sevik C; Sevinçli H; Cuniberti G; Cağın T
    ACS Nano; 2011 May; 5(5):3779-87. PubMed ID: 21452884
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Research Progress on Thermal Conductivity of Graphdiyne Nanoribbons and its Defects: A Review.
    Tian W; Cheng C; Wang C; Li W
    Recent Pat Nanotechnol; 2020; 14(4):294-306. PubMed ID: 32525786
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced thermoelectric performance of monolayer MoSSe, bilayer MoSSe and graphene/MoSSe heterogeneous nanoribbons.
    Deng S; Li L; Guy OJ; Zhang Y
    Phys Chem Chem Phys; 2019 Aug; 21(33):18161-18169. PubMed ID: 31389445
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Graphene-based SiC Van der Waals heterostructures: nonequilibrium molecular dynamics simulation study.
    Zanane FZ; Sadki K; Drissi LB; Saidi EH
    J Mol Model; 2022 Mar; 28(4):88. PubMed ID: 35267102
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Orientation dependent thermal conductance in single-layer MoS2.
    Jiang JW; Zhuang X; Rabczuk T
    Sci Rep; 2013; 3():2209. PubMed ID: 23860436
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tuning phononic and electronic contributions of thermoelectric in defected S-shape graphene nanoribbons.
    Bazrafshan MA; Khoeini F
    Sci Rep; 2022 Nov; 12(1):18419. PubMed ID: 36319726
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermal conductivity and interfacial thermal resistance behavior for the polyaniline-boron carbide heterostructure.
    Mayelifartash A; Abdol MA; Sadeghzadeh S
    Phys Chem Chem Phys; 2021 Jun; 23(23):13310-13322. PubMed ID: 34095909
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermal Transport Engineering in Graphdiyne and Graphdiyne Nanoribbons.
    Wan Y; Xiong S; Ouyang B; Niu Z; Ni Y; Zhao Y; Zhang X
    ACS Omega; 2019 Feb; 4(2):4147-4152. PubMed ID: 31459623
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Graphenylene nanoribbons: electronic, optical and thermoelectric properties from first-principles calculations.
    Meftakhutdinov RM; Sibatov RT; Kochaev AI
    J Phys Condens Matter; 2020 May; 32(34):. PubMed ID: 32303006
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparing the effects of dispersed Stone-Thrower-Wales defects and double vacancies on the thermal conductivity of graphene nanoribbons.
    Yeo JJ; Liu Z; Ng TY
    Nanotechnology; 2012 Sep; 23(38):385702. PubMed ID: 22947664
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermal conductivity and thermal rectification in graphene nanoribbons: a molecular dynamics study.
    Hu J; Ruan X; Chen YP
    Nano Lett; 2009 Jul; 9(7):2730-5. PubMed ID: 19499898
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vacancy-induced thermal transport in two-dimensional silicon carbide: a reverse non-equilibrium molecular dynamics study.
    Islam ASMJ; Islam MS; Ferdous N; Park J; Hashimoto A
    Phys Chem Chem Phys; 2020 Jun; 22(24):13592-13602. PubMed ID: 32515451
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.