BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 38906122)

  • 21. A chemical-bond-driven edge reconstruction of Sb nanoribbons and their thermoelectric properties from first-principles calculations.
    Shen JN; Fang Y; Lin ZX; Xie TZ; Zhang YF; Wu LM
    RSC Adv; 2019 Jan; 9(2):1047-1054. PubMed ID: 35517602
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Enhanced Thermoelectric Performance of As-Grown Suspended Graphene Nanoribbons.
    Li QY; Feng T; Okita W; Komori Y; Suzuki H; Kato T; Kaneko T; Ikuta T; Ruan X; Takahashi K
    ACS Nano; 2019 Aug; 13(8):9182-9189. PubMed ID: 31411858
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Thermal transport in multilayer silicon carbide nanoribbons: reverse non-equilibrium molecular dynamics.
    Zanane FZ; Drissi LB; Saidi EH; Bousmina M; Fehri OF
    Phys Chem Chem Phys; 2024 Feb; 26(6):5414-5428. PubMed ID: 38275005
    [TBL] [Abstract][Full Text] [Related]  

  • 24. An efficient mechanism for enhancing the thermoelectricity of nanoribbons by blocking phonon transport in 2D materials.
    Liu YY; Zeng YJ; Jia PZ; Cao XH; Jiang X; Chen KQ
    J Phys Condens Matter; 2018 Jul; 30(27):275701. PubMed ID: 29799436
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Thermal transport in monolayer zinc-sulfide: effects of length, temperature and vacancy defects.
    Islam ASMJ; Islam MS; Islam MR; Stampfl C; Park J
    Nanotechnology; 2021 Aug; 32(43):. PubMed ID: 34243178
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A theoretical insight into phonon heat transport in graphene/biphenylene superlattice nanoribbons: a molecular dynamic study.
    Farzadian O; Dehaghani MZ; Kostas KV; Mashhadzadeh AH; Spitas C
    Nanotechnology; 2022 Jun; 33(35):. PubMed ID: 35613550
    [TBL] [Abstract][Full Text] [Related]  

  • 27. WSe2 nanoribbons: new high-performance thermoelectric materials.
    Chen KX; Luo ZY; Mo DC; Lyu SS
    Phys Chem Chem Phys; 2016 Jun; 18(24):16337-44. PubMed ID: 27254307
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Influence of doped nitrogen and vacancy defects on the thermal conductivity of graphene nanoribbons.
    Yang H; Tang Y; Gong J; Liu Y; Wang X; Zhao Y; Yang P; Wang S
    J Mol Model; 2013 Nov; 19(11):4781-8. PubMed ID: 24013440
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Enhancement of thermoelectric performance in graphenylene nanoribbons by suppressing phonon thermal conductance: the role of phonon local resonance.
    Wu CW; Zhou WX; Xie G; Chen XK; Wu D; Fan ZQ
    Nanotechnology; 2022 Feb; 33(21):. PubMed ID: 35130521
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Lattice thermal conductivity of Janus MoSSe and WSSe monolayers.
    Qin H; Ren K; Zhang G; Dai Y; Zhang G
    Phys Chem Chem Phys; 2022 Aug; 24(34):20437-20444. PubMed ID: 35983909
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A Molecular Dynamics Simulation Study of In- and Cross-Plane Thermal Conductivity of Bilayer Graphene.
    Mohammadi R; Ghaderi MR; Hajian E
    Materials (Basel); 2023 Oct; 16(20):. PubMed ID: 37895695
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Tunable thermal transport in a WS
    Han D; Ding W; Wang X; Cheng L
    Nanoscale; 2019 Nov; 11(42):19763-19771. PubMed ID: 31386745
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Thermoelectric properties of armchair and zigzag silicene nanoribbons.
    Pan L; Liu HJ; Tan XJ; Lv HY; Shi J; Tang XF; Zheng G
    Phys Chem Chem Phys; 2012 Oct; 14(39):13588-93. PubMed ID: 22965156
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Thermal conductivity of a two-dimensional phosphorene sheet: a comparative study with graphene.
    Hong Y; Zhang J; Huang X; Zeng XC
    Nanoscale; 2015 Nov; 7(44):18716-24. PubMed ID: 26502794
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Tunable Electronic Properties of Lateral Monolayer Transition Metal Dichalcogenide Superlattice Nanoribbons.
    Wang J; Srivastava GP
    Nanomaterials (Basel); 2021 Feb; 11(2):. PubMed ID: 33669836
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of the nitrogen doping configuration and site on the thermal conductivity of defective armchair graphene nanoribbons.
    Senturk AE; Oktem AS; Konukman AES
    J Mol Model; 2017 Aug; 23(8):247. PubMed ID: 28766111
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Diffusive nature of thermal transport in stanene.
    Nissimagoudar AS; Manjanath A; Singh AK
    Phys Chem Chem Phys; 2016 May; 18(21):14257-63. PubMed ID: 27169141
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Thermal Conductivity of Graphene-hBN Superlattice Ribbons.
    Felix IM; Pereira LFC
    Sci Rep; 2018 Feb; 8(1):2737. PubMed ID: 29426893
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of vacancy concentration on the lattice thermal conductivity of CH
    Hong SN; Yu CJ; Jong UG; Choe SH; Kye YH
    RSC Adv; 2021 Oct; 11(54):34015-34023. PubMed ID: 35497285
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ultralow lattice thermal conductivity and dramatically enhanced thermoelectric properties of monolayer InSe induced by an external electric field.
    Chang Z; Yuan K; Sun Z; Zhang X; Gao Y; Qin G; Tang D
    Phys Chem Chem Phys; 2021 Jun; 23(24):13633-13646. PubMed ID: 34116567
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.